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Abstract

We study reinforcement learning for infinite-
horizon discounted linear kernel MDPs, where
the transition probability function is linear in
a predefined feature mapping. Existing UCLK
(Zhou et al., 2021b) algorithm for this setting
only has a regret guarantee, which cannot lead
to a tight sample complexity bound. In this pa-
per, we extend uniform-PAC sample complexity
from the episodic setting to the infinite-horizon
discounted setting, and propose a novel algo-
rithm dubbed UPAC-UCLK that achieves an
Õ
(
d2/((1 − γ)4ϵ2) + 1/((1 − γ)6ϵ2)

)
uniform-

PAC sample complexity, where d is the dimen-
sion of the feature mapping, γ ∈ (0, 1) is the
discount factor of the MDP and ϵ is the accuracy
parameter. To the best of our knowledge, this is
the first Õ(1/ϵ2) sample complexity bound for
learning infinite-horizon discounted MDPs with
linear function approximation (without access to
the generative model).

1. Introduction
In reinforcement learning (RL), the central goal is to de-
sign an efficient algorithm to learn the optimal (or near-
optimal) policy through repeated interactions between the
agent and an unknown environment. Markov decision pro-
cesses (MDPs) are typical models that describe the envi-
ronment formally. An MDP is described by a tuple of
action space, state space, reward function and transition
probability function. Based on the planning horizon and
the transition probability kernel, MDPs can be categorized
into three different types: (1) episodic MDPs (Azar et al.,
2017; Dann et al., 2017; Jin et al., 2018; 2020; Ayoub et al.,
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2020; Zhou et al., 2021a; Zhang et al., 2020a; Zanette et al.,
2020; He et al., 2021b), (2) infinite-horizon average reward
MDPs (Jaksch et al., 2010; Bartlett & Tewari, 2012; Ouyang
et al., 2017; Agrawal & Jia, 2017; Fruit et al., 2018b;a;
Talebi & Maillard, 2018; Zhang & Ji, 2019; Fruit et al.,
2020; Ortner, 2020; Wei et al., 2021; Wu et al., 2022), and
(3) infinite-horizon discounted MDPs (Kakade et al., 2003;
Strehl et al., 2006; Dong et al., 2019; Zhang et al., 2020b;
Szita & Szepesvári, 2010; Lattimore & Hutter, 2012; Liu
& Su, 2020; He et al., 2021a; Zhou et al., 2021a;b). The
theoretical studies of infinite-horizon discounted MDPs are
still quite limited, compared with the other two types of
MDPs. Without the restart process in episodic MDPs, or
the bounded diameter condition in infinite-horizon average
reward MDPs (Jaksch et al., 2010), the infinite-horizon dis-
counted MDP poses a great challenge for both algorithm
design and theoretical analysis.

Existing results for discounted MDPs mainly focus on the
tabular setting, where the agent can access each state-action
pair (s, a) and estimate the corresponding value functions in-
dividually. Without the help of a generative model (Kakade
et al., 2003) that allows the agent to visit all state-action
pairs (s, a), Lattimore & Hutter (2012); Dong et al. (2019);
Zhang et al. (2020b) and Liu & Su (2020); He et al. (2021a)
showed that it is still possible to obtain a polynomial sample
complexity or O(

√
T )-regret for discounted tabular MDPs.

However, these tabular RL algorithms are computationally
inefficient when the sizes of action and state spaces are
large. A common approach to deal with high-dimensional
(or even infinite) state space and action space is to use cer-
tain function classes, such as linear function class and neural
networks, to approximate the transition probability kernel
or the value function (Jin et al., 2020; Ayoub et al., 2020).
For discounted MDPs, Zhou et al. (2021b) studied a lin-
ear kernel MDP, where the transition probability kernel can
be represented by a linear function in some known fea-
ture mapping, and proposed the UCLK algorithm with an
O(
√
T )-regret guarantee. Unfortunately, unlike episodic

MDPs initialized at the same state for different episodes, the
regret guarantee cannot imply a finite sample complexity
bound for discounted MDPs. Therefore, UCLK can fail to
learn the ϵ-optimal policy, even though its regret is sublinear.
Thus, a natural question arises:
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Can we design provably efficient algorithms with
polynomial sample complexity for discounted MDPs with

linear function approximation?

In this paper, we answer this question affirmatively by
presenting a variant of the UCLK algorithm (Zhou et al.,
2021b), namely UPAC-UCLK, and prove that this algorithm
has a near-optimal sample complexity. In fact, our algorithm
enjoys a stronger notion of sample complexity guarantee
than the standard PAC sample complexity, which is called
uniform-PAC sample complexity Dann et al. (2017). As
discussed in Dann et al. (2017), the uniform-PAC guarantee
is stronger than both PAC sample complexity and regret,
and can further guarantee the convergence to the optimal
policy up to an arbitrarily small error.

Our contributions are summarized as follows:

• We adapt the multi-level scheme from He et al. (2021b)
to the UCLK algorithm (Zhou et al., 2021b), and pro-
pose a novel algorithm UPAC-UCLK for discounted
linear kernel MDPs. Compared with the original multi-
level scheme, we propose a novel discounted data in-
heritance technique, which adds a discounted portion
of data at each level to the subsequent level. With
this technique, newly added levels are non-empty at
initialization due to data inheritance, and high levels
contain low data information due to data discounting.
This technique provides crucial guarantees for our al-
gorithm, allowing us to uniformly bound the sample
complexity.

• We show that our algorithm satisfies the uniform-
PAC guarantee with sample complexity Õ

(
d2/((1 −

γ)4ϵ2) + 1/((1 − γ)6ϵ2)
)
, where d is the dimension

of the feature mapping, γ ∈ (0, 1) is the discount fac-
tor of the MDP and ϵ is the accuracy parameter. This
result immediately implies a high probability regret
bound Õ(d

√
T/(1− γ)2+

√
T/(1− γ)3), where T is

the number of interactions with the environment. The
regret bound matches that of UCLK algorithm (Zhou
et al., 2021b) up to a logarithmic factor, after ignoring
the extra Õ

(√
T/(1− γ)3

)
term in the regret. To the

best of our knowledge, UPAC-UCLK is the first algo-
rithm for infinite-horizon discounted RL with linear
function approximation that enjoys a (uniform) sample
complexity guarantee.

The remaining of this paper is organized as follows. Sec-
tion 2 reviews the mostly related work. Section 3 provides
the preliminaries of MDPs and reinforcement learning. Sec-
tion 4 presents our main algorithms. Section 5 introduces
the theoretical guarantees of our algorithm, and discusses
its implications. Section 6 provides a proof outline for the
main theorem, along with several key technical lemmas.

Section 7 concludes this work with discussions on the future
work. The detailed proofs are deferred to the appendix.

Notation In this work, we use lower case letters to denote
scalars, and use lower and upper case bold face letters to
denote vectors in Rd and d× d matrices respectively. For
a vector x ∈ Rd, we denote by ∥x∥2 the Euclidean norm.
Furthermore, for a positive-definite matrix Σ ∈ Rd×d, we
define the Mahalanobis norm of x with respect to Σ to be
∥x∥Σ =

√
x⊤Σx. In addition, for a matrix Σ with real

eigenvalues, we denote its largest and smallest eigenvalues
by λmax(Σ) and λmin(Σ) respectively. For two sequences
{an} and {bn}, we write an = O(bn) if there exists an
integer subscript n0 and an absolute constant C, such that
for all n ≥ n0, an ≤ Cbn. We use Õ(·) to further hide
logarithmic factors except for the log T term in all uniform-
PAC guarantees.

2. Related Work
In this section, we will review the mostly related work to
our work.

2.1. Infinite-horizon Discounted MDPs

For discounted tabular MDPs, there has been a series of
work providing sample complexity guarantees without the
help of a generative model (Kakade et al., 2003). For
these results, the algorithms have access to every possi-
ble state-action pair. They can be mainly grouped into
two categories: model-free algorithms and model-based
algorithms. For model-free algorithms, the value func-
tion for each state-action pair is directly estimated. For
instance, Strehl et al. (2006) first proposed the delayed
Q-learning algorithm with polynomial sample complexity
guarantee. Later, Dong et al. (2019) improved the sam-
ple complexity to Õ(SA/((1− γ)7ϵ2)) by proposing an
infinite Q-learning with UCB algorithm, where S is the
number of states and A is the number of actions. Recently,
Zhang et al. (2020b) proposed the UCB-multistage-adv al-
gorithm, which obtains a near-optimal sample complex-
ity Õ(SA/((1− γ)3ϵ2)) that matches the theoretical lower
bound. Model-based algorithms, on the other hand, estimate
the underlining environment or the transition probability
kernel and compute the value function from the estimated
environment. For instance, Szita & Szepesvári (2010) intro-
duced the MoRmax algorithm with Õ(SA/((1− γ)6ϵ2))
sample complexity. Later, Lattimore & Hutter (2012) pro-
posed the UCRL-γ algorithm and improved the sample com-
plexity to Õ(SA/((1− γ)3ϵ2)), under a strong assumption
on the transition probability kernel. Our work also falls into
the category of model-based algorithms, and considers the
sample complexity as the performance measure.

Recently, Liu & Su (2020) extended the definition of re-
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gret from episodic MDPs to the discounted MDPs, and
named it γ-regret. Under this notion of regret, Liu & Su
(2020) proposed the Double Q-Learning algorithm with an
Õ(
√
SAT/(1− γ)2.5) regret guarantee for the first T steps.

Later, He et al. (2021a) introduced the UCBVI-γ algorithm
and improved the regret bound to Õ(

√
SAT/(1− γ)1.5).

Additionally, He et al. (2021a) proved there exists a class
of hard-to-learn discounted MDPs such that the regret for
any algorithm is lower bounded by Ω̃(

√
SAT/(1− γ)1.5).

This matches the regret upper bound of UCBVI-γ algorithm
up to a logarithmic factor.

In an attempt to design algorithms that can learn efficiently
when the state and action spaces are high-dimensional or
even infinite, Zhou et al. (2021b) focused on discounted
MDPs with linear function approximation, and proposed
the UCLK algorithm with a Õ

(
d
√
T/(1− γ)2

)
regret guar-

antee, where d is the dimension of feature mapping. Later,
Zhou et al. (2021a) introduced the Bernstein-type bonus and
improved the regret bound to Õ

(
d
√
T/(1− γ)1.5

)
in their

new UCLK+ algorithm, which matches the regret lower
bound proved in Zhou et al. (2021b) up to a logarithmic
factor. However, both UCLK and UCLK+ only have regret
guarantees, and cannot provide any sample complexity guar-
antees. To the best of our knowledge, our UPAC-UCLK
algorithm gives the first sample complexity guarantee for
learning discounted MDPs with linear function approxima-
tion.

2.2. Uniform-PAC Guarantees in RL

Traditional analysis on reinforcement learning mainly fo-
cuses on the regret in the first T steps or the sample complex-
ity with respect to a specific accuracy parameter ϵ. Unfortu-
nately, both of these performance measures fail to guarantee
the convergence to optimal policy. To overcome this prob-
lem, Dann et al. (2017) first introduced a stronger perfor-
mance guarantee named uniform-PAC for episodic MDPs.
Different from traditional sample complexity guarantee,
uniform-PAC requires bounding the sample complexity at
all accuracy parameters ϵ simultaneously, and thus guaran-
tees that the number of steps with suboptimality larger than
ϵ is finite. Under this stronger performance measure, Dann
et al. (2017) proposed the UBEV algorithm and obtained an
Õ(SAH4/ϵ2) uniform-PAC guarantee, which implies that
the UBEV algorithm converges to the optimal policy. Here,
H is the length of each episode. Later, He et al. (2021b) fo-
cused on episodic MDPs with linear function approximation
and proposed the FLUTE algorithm. By introducing a mini-
max value function estimator and a multi-level scheme, the
FLUTE algorithm obtains an Õ(d3H5/ϵ2) uniform-PAC
guarantee for episodic linear MDPs (Jin et al., 2020). Our
algorithm UPAC-UCLK also satisfies the stronger uniform-
PAC guarantee, under the setting of discounted MDPs with
linear function approximation.

3. Preliminaries
In this work, we consider the infinite-horizon dis-
counted Markov decision processes (MDPs), denoted by
M(S,A, γ, r,P). In this tuple, S,A are the spaces of states
and actions respectively; γ ∈ (0, 1) is the discount fac-
tor; r(·, ·) : S × A → [0, 1] is the reward function, which
we assume to be deterministic and known to the agent;
P(·|·, ·) : S×A×S → R+ is the transition probability func-
tion that satisfies the equations

∫
s′∈S P(s′|s, a)dµ(s′) = 1

for arbitrary s ∈ S, a ∈ A; here dµ is a probability measure
on S . We will abbreviate dµ(s) as ds henceforth.

As an agent tries to learn an MDP via interaction with the
environment, it repeats the following process: it takes an
action a ∈ A based on the current state s, then receives
the next state s′ ∈ S with the reward r. We can thus label
these states and actions in chronological order with time
step subscripts t = 1, 2, . . .. For the agent, its choice of
an action at is based only on the available observations be-
fore the action, namely a tuple (s1, a1, . . . , st−1, at−1, st).
Consequently, we can define the agent’s (non-stationary)
policy π on an MDP M(S,A, γ, r,P) to be π = {πt}∞t=1,
where πt : {S × A}t−1 × S → A maps the tuple
(s1, a1, . . . , st−1, at−1, st) to an action at. The agent’s pol-
icy π, combined with the transition probability P, give rise
to the infinite-length random process consisting of states
and actions {st, at}∞t=1.

Now consider the expected total discounted reward of a
given policy π after a certain point in the learning process,
a.k.a., value functions. The action-value function and the
value function for policy π at time step t are defined as

Qπ
t (s, a) := E

[ ∞∑
τ=t

γτ−tr(sτ , aτ )

∣∣∣∣s1, . . . , st = s, at = a

]
,

V π
t (s) := E

[ ∞∑
τ=t

γτ−tr(sτ , aτ )

∣∣∣∣s1, . . . , st = s

]
,

where expectation is conditioned on the states and actions
up to time step t. With these in place, we can define the
optimal action-value function Q∗(s, a) := supπ Q

π
1 (s, a)

and optimal value function V ∗(s) := supπ V
π
1 (s). We

refer to the difference between the optimal value function
and the value function of policy π at time step t, ∆t =
V ∗(st)− V π

t (st), as the suboptimality gap . Now for any
real function defined on the state space V : S → R, we
define PV (s, a) := Es′∼P(·|s,a)V (s′). With this notation,
we can now deduce and express the Bellman equations in
discounted MDPs as follows:

Qπ
t (st, at) = r(st, at) + γPV π

t+1(st, at) (3.1)
Q∗(st, at) = r(st, at) + γPV ∗(st, at). (3.2)

We focus on linear kernel MDPs (Zhou et al., 2021b) in this
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work, which is also known as linear mixture models (Modi
et al., 2019) or linear mixture MDPs (Ayoub et al., 2020).

Definition 3.1 (Linear Kernel MDP (Zhou et al., 2021b)).
An MDP M(S,A, γ, r,P) is called a linear kernel MDP if
there exists a known feature mappingϕ(·|·, ·) : S×A×S →
Rd and an unknown vector θ ∈ Rd, ∥θ∥2 ≤

√
d, such that:

1. For all (s, a, s′) ∈ S × A × S , the transition prob-
ability function can be expressed as P(s′|s, a) =
⟨ϕ(s′|s, a),θ⟩;

2. For any bounded function V : S → [0, R],
∥ϕV (s, a)∥2 ≤

√
dR holds for all (s, a) ∈ S × A,

where ϕV (s, a) :=
∫
s′∈S ϕ(s

′|s, a)V (s′)ds′.

We denote such an MDP by M(θ;ϕ) for simplicity.

From Definition 3.1, the following equation holds for any
function V : S → [0, R]:

⟨θ∗,ϕV (s, a)⟩ = PV (s, a). (3.3)

Now we define the set of all feasible θ’s satisfying the
conditions in Definition 3.1 to be

B :=

{
θ ∈ Rd : ∥θ∥2 ≤

√
d and (3.4)

⟨ϕ(·|s, a),θ⟩ is a probability measure on S
}
,

which, as we will see in Lemma A.3 in the appendix, is a
convex body when constrained to an affine subspace L of
Rd.

For linear kernel MDPs, Zhou et al. (2021b) proposed the
Upper-Confidence Linear Kernel (UCLK) algorithm that
achieves near-optimal regret. However, as pointed out by
Dann et al. (2017), algorithms with regret bounds do not
generally converge to the optimal policy: as long as the
regret tends to infinity as t→∞, high suboptimal gaps may
occur infinitely often. To overcome this issue, Dann et al.
(2017) proposed a stronger notion of performance measure
called uniform-PAC that guarantees the convergence to the
optimal policy with high probability. We now extend it to
the discounted MDP setting.

Definition 3.2 (Uniform-PAC). For an algorithm Alg on an
MDP, denote its corresponding policy by π. For any ϵ > 0,
define Nϵ =

∑∞
t=1 1{V ∗(st)−V π

t (st) > ϵ} to be the total
number of time steps where the suboptimality gap is greater
than ϵ. Algorithm Alg is said to be uniform-PAC for some
δ ∈ (0, 1) with sample complexity Γ

(
1/ϵ, log(1/δ)

)
if

P
[
∃ϵ > 0, Nϵ > Γ

(
1/ϵ, log(1/δ)

)]
≤ δ, ∀δ ∈ (0, 1),

where Γ(·, ·) is a polynomial function dependent on the
MDP itself.

Remark 3.3. Definition 3.2 is slightly different from that
in Dann et al. (2017); He et al. (2021b) due to the different
definitions of Nϵ. Specifically, Dann et al. (2017); He et al.
(2021b) focused on episodic MDPs, where the suboptimal-
ity gap ∆k = V ∗

1 (s
k
1) − V π

1 (sk1), and Nϵ is the number
of episodes with suboptimality gap greater than ϵ. Due
to the difference between episodic MDPs and discounted
MDPs, we define the suboptimality for each time step t as
∆t = V ∗(st) − V π

t (st) and define the sample complex-
ity as Nϵ =

∑∞
t=1 1{V ∗(st) − V π

t (st) > ϵ}. In addi-
tion, for linear kernel MDPs, the sample complexity bound
should be expressed in the form Γ(1/ϵ, log(1/δ); γ, d),
where γ, d are the parameters of M(θ;ϕ), rather than
Γ(1/ϵ, log(1/δ); γ, |S|, |A|) for tabular MDPs. One would
expect Γ to be polynomial in 1/(1 − γ) and d as well.
Though in Dann et al. (2017), uniform-PAC was defined in
the finite-horizon setting with finite state and action spaces,
the proof of its basic properties does not depend on the spe-
cific MDP model. Hence, we still have the conclusions that
uniform-PAC sample complexity bound implies both the
PAC sample complexity bound and the regret bound, and it
guarantees the convergence to the optimal policy with high
probability, as stated in Theorem 3 of Dann et al. (2017).

From now on, we assume the true θ in the target linear
kernel MDP M(θ;ϕ) to be θ∗.

4. Proposed Algorithms
In this section, we propose a new algorithm called UPAC-
UCLK for learning infinite-horizon discounted linear kernel
MDPs. Our algorithm UPAC-UCLK is inspired by the
UCLK algorithm (Zhou et al., 2021b). To achieve the
uniform-PAC guarantee, we incorporate the multi-level par-
tition scheme proposed in He et al. (2021b) and separate all
time steps and their corresponding data into different lev-
els. The algorithm is described in Algorithm 1. It is worth
noting that the direct application of multi-level scheme to
the infinite-horizon discounted MDPs requires maintaining
infinite number of levels. However, this is infeasible in
practice. In order to overcome this problem, we will main-
tain L “effective” levels along with extra 3L+ C0 auxiliary
levels in Algorithm 1, which can be seen as a finite-level
approximation to the infinite number of levels.

4.1. Planning (Line 4 to 7 of Algorithm 1)

At the beginning of time step t, our algorithm calculates the
estimates of θ∗ for all available levels l = 1, 2, . . . , 4L+C0.
By (3.3), we have ⟨θ∗,ϕVt

(st, at)⟩ = PVt(st, at) =
E
[
Vt(st+1)

∣∣st, at], so a natural method to estimate θ∗ is
using linear regression. In particular, we calculate the es-
timates by the closed-form solution of linear regression
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Algorithm 1 Uniform-PAC UCLK (UPAC-UCLK)
Require: Regularization parameter λ, exploration param-

eters βl for l = 1, 2, . . ., number of value iteration
rounds Ut for t = 1, 2, . . ..

1: Initialize C0 ← 3
⌈
log

(√
d/(1− γ)

)
/ log 2

⌉
+ 6,

L← 0, Σl ← λI, bl ← 0, l = 1, 2, . . ..
2: Receive initial state s1.
3: for time step t = 1, 2, . . . do
4: for all level l ∈ {1, 2, . . . , 4L+ C0} do
5: θ̂l ← (Σl)−1bl, Cl ← {θ : ∥θ − θ̂l∥Σl ≤ βl}.
6: end for
7: {Ql

t(·, ·)}
4L+C0

l=1 , Vt(·)← ML-EVI({Cl}4L+C0

l=1 , Ut).

8: at ← argmaxa min1≤l≤L Ql
t(st, a),

9: receive st+1 ∼ P(·|st, at).
10: lt ← 1.
11: while lt ≤ L and

∥ϕVt(st, at)∥(Σlt )−1 ≤ 2−lt
√
d/(1− γ) do

12: lt ← lt + 1
13: end while
14: if lt = L+ 1 then
15: for level l = 4L+ C0 + 1, . . . , 4L+ C0 + 4 do
16: Σl ← λI+ 1

2 (Σ
l−1 − λI), bl ← 1

2b
l−1.

17: end for
18: L← L+ 1.
19: end if
20: for level l = lt, . . . , 4L+ C0 do
21: Σl ← Σl + 2lt−lϕVt

(st, at)ϕVt
(st, at)

⊤,
22: bl ← bl + 2lt−lϕVt

(st, at)Vt(st+1).
23: end for
24: end for

θ̂l =
(
Σl

)−1
bl for each level, where Σl and bl are updated

in Lines 16, 21 and 22. In Line 5, we then construct the con-
fidence sets Cl of θ∗ for all levels l, which are centered at θ̂l

with radius βl. The Multi-Level Extended Value Iteration
Algorithm (ML-EVI), as described in the next subsection,
then calculates the estimates of value functions {Ql

t} and
Vt.

4.2. Multi-Level Extended Value Iteration (Algorithm 2)

The ML-EVI algorithm is described in Algorithm 2. It can
be seen as an extension of the Extended Value Iteration
algorithm (EVI, Algorithm 2 from Zhou et al. (2021b)). By
alternating between performing the greedy policy (Line 3)
and an approximate Bellman equation (Line 6), it finds an
optimistic estimate for the optimal value functions Q∗(·, ·)
and V ∗(·).

Discounted Data Inheritance. In He et al. (2021b), each
data point (i.e., a pair of regression predictor and response)
is only added to one single level. In contrast, in our setting,

Algorithm 2 Multi-Level Extended Value Iteration (ML-
EVI)
Require: Number of levels L, confidence sets Cl, l =

1, . . . , L, number of value iteration rounds U .
1: Q

(0)
l (·, ·)← 1/(1− γ) for l = 1, . . . , L.

2: for u = 1, . . . , U do
3: V (u−1)(·)← maxa∈A min1≤l≤L Q

(u−1)
l (·, a),

4: for l = 1, . . . , L do
5: if B ∩ Cl ̸= ∅ then

6:
Q

(u)
l (·, ·)←r(·, ·)

+ γ max
θ∈B∩Cl

⟨θ,ϕV (u−1)(·, ·)⟩.
7: else
8: Q

(u)
l (·, ·)← 1/(1− γ).

9: end if
10: end for
11: end for
12: V (U)(·)← maxa min1≤l≤L Q

(U)
l (·, a).

13: return {Q(U)
l (·, ·)}Ll=1, V

(U)(·).

the data in one level are inherited by the subsequent levels
after being discounted. Under this scheme, our estimate of
θ∗ at level l at time step t regresses over the set of data{

2(lτ−l)/2
(
ϕVτ (sτ , aτ ), Vτ (sτ+1)

)
: τ ≤ t, lτ ≤ l

}
,

which has a closed-form solution θ̂l =
(
Σl

)−1
bl with Σl

and bl being defined as follows:

Σl = λI+
t∑

τ=1

1{lτ ≤ l}2lτ−lϕVτ
(sτ , aτ )ϕVτ

(sτ , aτ )
⊤,

bl =
t∑

τ=1

1{lτ ≤ l}2lτ−lϕVτ
(sτ , aτ )Vτ (sτ+1).

We now explain the reasons behind this algorithm design.

As we will see in (6.5) of Section 6, in order to bound
the sample complexity, we need to control the term (Vt −
Vt+1)(st+1): the difference on st+1 between two consecu-
tive optimistic value functions output by Algorithm 2. When
the total number of levels L is increased by 1 in Line 18
of Algorithm 1, we say a new level is activated. Without
data inheritance, newly activated levels hold a very scarce
amount of data and have large exploration radii. This im-
plies that the corresponding confidence sets are large. If
these levels were selected in the minimization operation of
Line 3 or Line 12 in Algorithm 2 at a later iteration u, it may
produce an inaccurate estimation of the value function. In
contrast, with data inheritance, newly activated levels will
have enough data to produce sufficiently small confidence
sets and this problem can be alleviated.

In addition, we need to discount the data when inheriting
data from lower levels. The main reason is that for those
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levels much higher than L, they still have large exploration
radii, so adding the undiscounted new data can result in
big changes to their confidence sets. With data discount-
ing, the addition of data to levels much higher than L is
exponentially small and therefore negligible.

With the help of discounted data inheritance, the
term (Vt − Vt+1)(st+1) can be roughly bounded by
Õ
(√
ϕVt

(st, at)⊤(Σlt)−1ϕVt
(st, at)

)
= O(2−lt) and

will diminish as t→∞.

4.3. Execution (Line 8 to 9 in Algorithm 1)

The algorithm estimates the action-value function Q∗ by
taking a minimum on the upper bounds Ql

t, and chooses
the next action based on this estimate. The next state is
then generated by the environment based on the underlying
transition probability function P.

4.4. Level Selection (Line 10 to 23 in Algorithm 1)

Since our new predictor at time step t is ϕVt
(st, at), its un-

certainty at level l is characterized by ∥ϕVt(st, at)∥(Σl)−1 .
Based on the uncertainty, our algorithm finds the minimum
level l at which the uncertainty exceeds the threshold value
at level l, i.e.,

lt = min
l≤L

{
∥ϕVt(st, at)∥(Σl)−1 > 2−l

√
d/(1− γ)

}
.

If this minimum value does not exist, or in other words the
uncertainty is less than the thresholds at all effective levels
l ≤ L, lt is set to L + 1, L ← L + 1, and a new effective
level is activated along with 3 other auxiliary levels. Based
on the discounted data inheritance scheme, the initialization
of these new levels has the following form

Σl ←λI+
1

2
(Σl−1 − λI),bl ← 1

2
bl−1.

Finally, Algorithm 1 updates the variables Σ,b for all levels
l ≥ lt by adding the new data using the discounted data
inheritance scheme (Line 20 to 23).

5. Main Results
In this section, we present the theoretical guarantees for
our UPAC-UCLK algorithm. Our main result is a theo-
rem which certifies that our algorithm UPAC-UCLK has a
uniform-PAC guarantee with an efficient sample complexity
bound.

Theorem 5.1. For any linear mixture MDP, if we set λ ≥ 1

and the parameters βl and Ut in Algorithm 1 as follows:

Ut :=
⌈
log

(
t(t+ 1)

)
/(1− γ)

⌉
,

βl :=
2

1− γ

(
3
√

dmax{l, l0}+ 2
√

log(1/δ)
)
+ 2
√
dλ,

(5.1)

where l0 := log
(√

d/(1− γ)
)
/ log 2, then with probability

at least 1 − δ, for all accuracy parameter ϵ > 0, the num-
ber of time steps with suboptimality gap larger than ϵ in
Algorithm 1 is upper bounded by

Γ
(
1/ϵ, log(1/δ); γ, d

)
= Õ

(
1

(1− γ)6ϵ2
+

d2 + d log(1/δ)

(1− γ)4ϵ2

)
,

where d is the dimension of feature mapping and γ is the
discount factor.

Remark 5.2. Similar to the main results in Zhou et al.
(2021b), our sample complexity bound does not depend
on the size of state space S or that of action space A. This
suggests that our algorithm is applicable to MDPs with large
state and action spaces.

Corollary 5.3. Under the same conditions in Theorem 5.1,
with probability at least 1− δ, the regret of Algorithm 1 is
bounded as follows

Regret(T ) = Õ

(
d+

√
d log(1/δ)

(1− γ)2

√
T +

√
T

(1− γ)3

)
.

Remark 5.4. Corollary 5.3 suggests that UPAC-UCLK en-
joys an Õ(d

√
T/(1− γ)2 +

√
T/(1− γ)3) regret. In com-

parison, the UCLK algorithm in Zhou et al. (2021b) enjoys
an Õ(d

√
T/(1−γ)2) regret. Our algorithm suffers an extra

Õ(
√
T/(1− γ)3) term in the regret. This originates from a

bound on the difference between ML-EVI outputs for two
consecutive time steps, and we leave it as a future work to
remove this term.

6. Proof Sketch of the Main Results
In this section, we will present the proof sketch of the main
results. The detailed proof can be found in the appendix.

We first present several central lemmas, and then give a short
sketch outlining the proof of Theorem 5.1. For the ease of
presentation, we introduce new notations for the variables
in Algorithm 1: denote the variables L, Σl, bl, θ̂l and Cl
after Line 6 of time step t by Lt, Σl

t, b
l
t, θ̂

l
t and Clt.

For simplicity, we define klt :=
∑t−1

τ=1 1{lτ ≤ l}2lτ−l for
t ≥ 1 and l ≥ 0, which represents the total amount of data
in level l at time step t. With this notation, we have the
following lemma upper bounding this value:
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Lemma 6.1. Let l0 := log
(√

d/(1− γ)
)
/ log 2. Consider

klmax := limt→∞ klt. For each level 1 ≤ l ≤ l0, we have
klmax ≤ 20dl0, while for l > l0, klmax ≤ 20dl4l−l0 .

Lemma 6.1 is parallel to Lemma A.1 from He et al. (2021b).
It suggests that the amount of data in level l is finite
with an upper bound exponential in l. Note that when l
reaches beyond l0, the threshold value at level l namely
2−l0
√
d/(1− γ) shrinks to below constant 1, which is con-

sidered the beginning of “useful” levels in our analysis.

Lemma 6.2. For the factor βl defined in (5.1), with proba-
bility at least 1− δ/2, for all steps t and levels l, we have
∥θ∗ − θ̂lt∥Σl

t
≤ βl/2.

Lemma 6.2 suggests that with the given factor βl, the true
vector θ∗ lies within halved confidence sets in each level
and time step. Here the radii of our confidence sets are set to
be twice as large as normally defined. This is to ensure that
θ∗ stays relatively close to the center of the confidence sets,
and will enable our later bounds concerning the difference
between confidence sets. For simplicity, we denote the event
in Lemma 6.2 as E1.

Lemma 6.3. Under E1, for all t, l and (s, a) ∈ S ×A, we
have

1

1− γ
≥ Ql

t(s, a) ≥ Q∗(s, a),

1

1− γ
≥ Vt(s) ≥ V ∗(s). (6.1)

Lemma 6.3 suggests that the results of Algorithm 2 are
upper bounds of the optimal value functions Q∗ and V ∗.

Lemma 6.4. Under E1, for all t and l, there exists a certain
θlt ∈ Clt ∩ B, so that

Ql
t(st, at) ≤ r(st, at) + γ⟨θlt,ϕVt(st, at)⟩+ γUt . (6.2)

Lemma 6.4 characterizes the transition error of Algorithm 2.
Inequality (6.2) is an approximate version of the Bellman
equation (3.2), and suggests that in order to reach an error of
O(1/ϵ), a number of iteration rounds of order O(log(1/ϵ))
is needed.

We are now ready to begin our proof. Our analysis of sam-
ple complexity follows a similar road map as in Lemma 1 of
Dong et al. (2019). We take the summation of large subopti-
mality over all time steps, which is trivially lower bounded,
and then upper bound the sum with similar methods as in
the proof of Theorem 1 of Zhou et al. (2021b). This yields
an inequality centered around the sample complexity, which
leads to the eventual conclusion.

Proof sketch of Theorem 5.1. In order to bound the sample
complexity Nϵ =

∑∞
t=1 1{V ∗(st)−V π

t (st) > ϵ}, consider
the set

Tϵ = {t : V ∗(st)− V π
t (st) > ϵ},

we instantly have

ϵNϵ <
∑
t∈Tϵ

(
V ∗(st)− V π

t (st)
)
. (6.3)

We then bound the right hand side of (6.3). By (6.1) from
Lemma 6.3, the suboptimality gap V ∗(st)−V π

t (st) is upper
bounded by Vt(st)− V π

t (st). Using (6.2) from Lemma 6.4
and the policy Bellman equation (3.1), we can decompose
the suboptimality and eventually obtain

(Vt − V π
t )(st) ≤ Γ(t) + γ∆(t) + γ(Vt − Vt+1)(st+1)

+ γ(Vt+1 − V π
t+1)(st+1), (6.4)

where

Γ(t) = 1/
(
t(t+ 1)

)
+ 3 · 2l0−ltγβlt−1,

∆(t) = P(Vt − V π
t+1)(st, at)− (Vt − V π

t+1)(st+1).

By iterating (6.4) for T rounds, we can bound the subopti-
mality gap by

(V ∗ − V π
t )(st) ≤

γT

1− γ
+At +Bt + Ct, (6.5)

where

At =
t+T−1∑
τ=t

γτ−tΓ(τ),

Bt =

t+T−1∑
τ=t

γτ−t+1∆(τ),

Ct =
t+T−1∑
τ=t

γτ−t+1(Vτ − Vτ+1)(sτ+1).

However, when the level lt is small, the bound above is
too large; in fact, it could go much larger than the trivial
bound 1/(1− γ). We thus define the conditionQt = {lτ >
l0, ∀t ≤ τ < t + T}, and separate the right hand side of
(6.3) into two parts accordingly:∑

t∈Tϵ

(
V ∗(st)− V π

t (st)
)

≤
∑
t∈Tϵ

1{Qt}
1

1− γ

+
∑
t∈Tϵ

1{Qt}
(

γT

1− γ
+At +Bt + Ct

)
.
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Since Qt is false only for a small amount of t, the first
term on the right hand side here is easy to bound. We then
seek to bound the sums

∑
t∈Tϵ

1{Qt}At,
∑

t∈Tϵ
1{Qt}Bt

and
∑

t∈Tϵ
1{Qt}Ct separately. For the sum of At, the

individual terms are already explicit expressions. For Bt,
we view ∆(t) as a martingale sequence and use the Azuma-
Hoeffding inequality for a bound that holds with probability
at least 1− δ/2. Bounding the sum of Ct is the hardest and
most novel section of our result.

The term Ct comes down to the difference between ML-EVI
outputs at two consecutive time steps. Unlike the regret anal-
ysis for the UCLK algorithm (Zhou et al., 2021b), where one
can trivially bound the sum of the difference by 1/(1− γ),
we introduce a novel method that decomposes the difference
and expresses it with terms representing changes in confi-
dence ellipsoids. The effectiveness of this bound relies on
the discounted data inheritance scheme we proposed earlier
in Section 4.2.

We backtrack the extended value iteration for this bound.
Denote the variables Q

(u)
l and V (u) in the run of Algo-

rithm 2 at time step t as Q
(u)
l,t and V

(u)
t . Next define

Du := maxs∈S
(
V

(Ut−u)
t −V

(Ut+1−u)
t+1

)
(s). By expanding

the value functions according to the iteration rules (spec-
ified in Lines 3 and 6 of Algorithm 2), we can prove the
inequality

Du−1 ≤ γDu + γmax
ϕV ,l

(
max
θ1

⟨θ1,ϕV ⟩ −max
θ2

⟨θ2,ϕV ⟩
)
,

(6.6)

where θ1 takes the maximum in Clt∩B, and θ2 from Clt+1∩B.
We can iterate (6.6) with respect to u, and the problem boils
down to bounding the difference between confidence sets.

Suppose θ̃1 := argmaxθ1
⟨θ1,ϕV ⟩. For the maximum

concerning θ2 in (6.6), we need to find a suitable θ̃2 that
can be used to lower bound maxθ2⟨θ2,ϕV ⟩ while being
comparable to θ̃1. Starting from θ∗, we go in the di-
rection of θ̃1 until we reach the boundaries of Clt+1 ∩ B
and name our ending point θ̃2. In other words, consider
µmax = sup{µ : θ∗ + µ(θ̃1 − θ∗) ∈ Clt+1 ∩ B}, and let
θ̃2 = θ∗ + µmax(θ̃1 − θ∗). We have

max
θ1

⟨θ1,ϕV ⟩ −max
θ2

⟨θ2,ϕV ⟩

≤ (1− µmax)⟨θ̃1 − θ∗,ϕV ⟩. (6.7)

Next, using the fact that θ̃2 belongs to the border of Clt+1∩B,
we can obtain an upper bound for 1−µmax. Intuitively, when
θ̃2 ∈ ∂Clt+1, we have ∥θ̃2 − θ̂lt∥Σl

t
≈ ∥θ̃2 − θ̂lt+1∥Σl

t+1
=

βl, and since ∥θ̃1 − θ̂lt∥Σl
t
= βl, we further have θ̃1 ≈ θ̃2

and µmax ≈ 1. Combining this with (6.7) and (6.6), we

obtain an upper bound for D0 = maxs∈S(Vt − Vt+1)(s),
and consequently a bound for Ct.

Putting the bounds for At, Bt and Ct together, we ultimately
acquire an inequality of the form

ϵNϵ ≤ C1Nϵ + C2

√
Nϵ + C3,

where C1 can be arbitrarily small with proper parameter
choices. Solving this inequality with Nϵ as the main vari-
able, we can finally obtain an upper bound on Nϵ that holds
with probability at least 1− δ/2− δ/2 = 1− δ.

7. Conclusions
We proposed a new algorithm UPAC-UCLK for learning
linear kernel MDPs and proved that it is uniform-PAC with
sample complexity Õ

(
d2/((1− γ)4ϵ2) + 1/((1− γ)6ϵ2)

)
.

This is the first algorithm with uniform PAC guarantee in the
discounted MDPs setting. Our result shows that the optimal
policy in linear kernel MDPs can be learned efficiently. Our
sample complexity bound has a term Õ

(
1/((1 − γ)6ϵ2)

)
that stems from the ML-EVI in our analysis. Achieving
minimax optimal sample complexity bound is left as an
open question for future work.
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A. Proof of the Main Results
We first give a few topological definitions. Under universal set U ⊂ Rd, for x ∈ Rd, define BU (x, r) := {y ∈ U :
∥y − x∥2 < r}. For X ⊂ U , a point x ∈ X is its inner point (when constrained to U) if ∃r > 0, BU (x, r) ∈ X ; a point
x ∈ U is its boundary point (when constrained to U) if ∀r > 0, BU (x, r) ∩ X ̸= ∅, BU (x, r) ∩ XC ̸= ∅. Denote the
boundary of X as ∂UX , which is defined as the set of all boundary points of X (when constrained to U). If U = Rd,
we will not mention U when using these terminologies, and we define the corresponding notations in this scenario as
B(x, r) := BRd(x, r), ∂ := ∂Rd .

An affine subspace in Rd is defined as a subset of Rd of the form {x ∈ Rd : Li(x) = αi, i = 1. . . . , d0}, where d0 ≤ d is a
positive integer, L1, . . . , Ld0

: Rd → R are mutually independent linear functions of x ∈ Rd, and α1, . . . , αd0
∈ R.

Before diving into the main proof, we provide a few more lemmas in aid of our proof.

The first lemma sets up alternative definitions for the variables Σl
t and bl

t, which clarify their utilities and drop the restraint
l ≤ 4Lt + C0 between l and t.

Lemma A.1. For each time step t and level l, define the alternative and extended expressions for the variables Σl
t :=

λI +
∑t−1

τ=1 1{lτ ≤ l}2lτ−lϕVτ
(sτ .aτ )ϕVτ

(sτ .aτ )
⊤ and bl

t :=
∑t−1

τ=1 1{lτ ≤ l}2lτ−lϕVτ
(sτ .aτ )Vτ (sτ+1). Then for

l ≤ 4Lt + C0, the definitions given here yield the same values as the variables given in Algorithm 1.

From now on, for the variables Σl
t and bl

t, we use the definitions given in Lemma A.1. We also define θ̂lt := (Σl
t)

−1bl
t,

Clt := {θ ∈ Rd : ∥θ − θ̂lt∥Σl
t
≤ βl} for arbitrary t, l.

The next lemma does the same thing for the ML-EVI algorithm. More specifically, it shows that one can extend the total
number of levels in Algorithm 2 to infinity and obtain essentially the same results.

Lemma A.2. For each time step t, consider an alternative run of the ML-EVI algorithm with L = ∞, Cl = Clt for
l = 1, 2, . . . and U = Ut. We compare this newly constructed run to the canonical run at time step t.

To do so, we write the variables in this run with an additional suffix ∗, resulting in the notations Q(u)
l,∗ , V

(u)
∗ for iteration

round u = 0, 1, . . . , Ut. Then we have

Q
(u)
l,∗ = Q

(u)
l , ∀1 ≤ l ≤ 4Lt + C0, ∀0 ≤ u ≤ Ut,

Q
(u)
l,∗ ≥ Q

(u)
4Lt+C0

, ∀l > 4Lt + C0, ∀0 ≤ u ≤ Ut,

V
(u)
∗ = V (u), ∀0 ≤ u ≤ Ut.

We will use this alternative run of ML-EVI instead of the canonical run in future analysis. Thus, we are completely rid of
the constraint l ≤ 4Lt + C0.

Lemma A.3. The set of θ ∈ Rd that satisfies the conditions for linear kernel MDPs in Definition 3.1, denoted by B, lies
within an affine subspace L ⊂ Rd; furthermore, it is a convex body (closed and bounded with non-empty interior) when
constrained to L.

This lemma describes the general shape of B and prepares us for future geometrical analysis on the parameter space.

A.1. Proof of Theorem 5.1

We are now ready to prove our main theorem in detail.

Proof of Theorem 5.1. We will work under the event E1 in this proof, which holds with probability at least 1−δ/2 according
to the definition of E1 and Lemma 6.2. For convenience, our proof is segmented into four parts.

Part I: Sample Complexity Analysis

In the first part, we give an iterable upper bound on the suboptimality gap, and deduce from it an inequality for the sample
complexity Nϵ. Without losing any generality, we assume ϵ ≤ 1/(1− γ).
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We start by analyzing the suboptimality gap. From Lemma 6.3, we have V ∗(st) − V π
t (st) ≤ Vt(st) − V π

t (st). In the
following, we seek to deduce an upper bound for (Vt − V π

t )(st) that contains the next term (Vt+1 − V π
t+1)(st+1), so we can

iterate this bound over t.

As a first step, notice that according to the definitions of value functions for policy π, we have V π
t (st) = Qπ

t (st, at); accord-
ing to Line 12 of Algorithm 2 and Line 8 of Algorithm 1, we have Vt(st) = maxa∈A minl≥1 Q

l
t(st, a) = minl≥1 Q

l
t(st, at).

Combining these equations with Lemma 6.4 and the Bellman equation (3.2), we can deduce

Vt(st)− V π
t (st) = min

l≥1
Ql

t(st, at)−Qπ
t (st, at)

≤ Qlt−1
t (st, at)−Qπ

t (st, at)

≤ r(st, at) + γ⟨θlt−1
t ,ϕVt

(st, at)⟩+ γUt − r(st, at)− γ⟨θ∗,ϕV π
t+1

(st, at)⟩

= γUt + γ

[〈
θlt−1
t ,ϕVt(st, at)

〉
−

〈
θ∗,ϕV π

t+1
(st, at)

〉]
. (A.1)

Now consider the bracketed part of (A.1), we decompose the difference into two parts, namely〈
θlt−1
t ,ϕVt(st, at)

〉
−
〈
θ∗,ϕV π

t+1
(st, at)

〉
=

〈
θlt−1
t − θ∗,ϕVt(st, at)

〉︸ ︷︷ ︸
I1

+
〈
θ∗,ϕVt(st, at)− ϕV π

t+1
(st, at)

〉︸ ︷︷ ︸
I2

. (A.2)

For I1, under the event E1, we have from Lemma 6.2 that for all l, ∥θ∗− θ̂lt∥Σl
t
≤ βl/2; also, from the condition θlt ∈ Clt∩B

in Lemma 6.4, we have ∥θlt − θ̂lt∥Σl
t
≤ βl. On the other hand, from the selection rule of lt specified in Lines 10 to 13

of Algorithm 1, inequality ∥ϕVt
(st, at)∥(Σlt−1

t )−1 ≤ 2−(lt−1)
√
d/(1 − γ) holds. Together with the Cauchy-Schwartz

Inequality ∥x∥Σ · ∥y∥Σ−1 ≥ ⟨x, y⟩, we have that

I1 =
〈
θlt−1
t − θ∗,ϕVt

(st, at)
〉

≤ ∥θlt−1
t − θ∗∥

Σ
lt−1
t
∥ϕVt

(st, at)∥(Σlt−1
t )−1

≤
(
∥θlt−1

t − θ̂lt−1
t ∥

Σ
lt−1
t

+ ∥θ̂lt−1
t − θ∗∥

Σ
lt−1
t

)
· ∥ϕVt

(st, at)∥(Σlt−1
t )−1

≤ (βlt−1 +
1

2
βlt−1) · 2−(lt−1)

√
d/(1− γ)

= 3 · 2l0−ltβlt−1, (A.3)

where in the second inequality we used the triangle inequality, and in the final equation we used the definition of l0 from
Lemma 6.1.

For I2, recall from (3.3) that ⟨θ∗,ϕV (st, at)⟩ = PV (st, at) for arbitrary V , therefore

I2 = ⟨θ∗,ϕVt
(st, at)− ϕV π

t+1
(st, at)⟩

= P(Vt − V π
t+1)(st, at). (A.4)

Additionally, from the definition of Ut in (5.1), we have

γUt ≤ γlog[t(t+1)]/(1−γ)

=

[(
1− (1− γ)

)1/(1−γ)
]log[t(t+1)]

≤
[
e−1

]log[t(t+1)]

=
1

t(t+ 1)
. (A.5)
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Now substitute (A.3) and (A.4) into (A.2) and then into (A.1) along with the above inequality, to obtain

Vt(st)− V π
t (st) ≤ γUt + γ

[
3 · 2l0−ltβlt−1 + P(Vt − V π

t+1)(st, at)
]

≤ 1

t(t+ 1)
+ 3γ · 2l0−ltβlt−1 + γ

[
P(Vt − V π

t+1)(st, at)− (Vt − V π
t+1)(st+1)

]
+ γ(Vt − V π

t+1)(st+1)

= Γ(t) + γ∆(t) + γ(Vt − Vt+1)(st+1) + γ(Vt+1 − V π
t+1)(st+1), (A.6)

where in the final equation we define Γ(t) := 1/
(
t(t+ 1)

)
+ 3γ · 2l0−ltβlt−1 and ∆(t) := P(Vt − V π

t+1)(st, at)− (Vt −
V π
t+1)(st+1).

Iterate Inequality (A.6) for T rounds (through t, t+ 1, . . . , t+ T ), and we get the following suboptimality bound:

V ∗(st)− V π
t (st) ≤ Vt(st)− V π

t (st)

≤
t+T−1∑
τ=t

γτ−t
[
Γ(τ) + γ∆(τ) + γ(Vτ − Vτ+1)(sτ+1)

]
+ γT (Vt+T − V π

t+T )(st+T )

≤
t+T−1∑
τ=t

γτ−tΓ(τ)︸ ︷︷ ︸
At

+
t+T−1∑
τ=t

γτ−t+1∆(r)︸ ︷︷ ︸
Bt

+
t+T−1∑
τ=t

γτ−t+1(Vτ − Vτ+1)(sτ+1)︸ ︷︷ ︸
Ct

+
γT

1− γ
, (A.7)

where the last inequality is due to 0 ≤ V π
t+T (st+T ), Vt+T (st+T ) ≤ 1/(1− γ).

Now suppose the set of all time steps where the suboptimality gap is greater than ϵ is Tϵ := {t : V ∗(st)− V π
t (st) > ϵ},

with a total number of Nϵ = #Tϵ elements. Define the condition Qt = {lτ > l0, ∀t ≤ τ < t + T}. Since we also have
trivially that V ∗(st)− V π

t (st) ≤ 1/(1− γ), we can obtain by summing (A.7) over all time steps t in set Tϵ that

ϵNϵ ≤
∑
t∈Tϵ

(
V ∗(st)− V π

t (st)
)

≤
∑
t∈Tϵ

1{Qt}
(

γT

1− γ
+At +Bt + Ct

)
+

∑
t∈Tϵ

1{Qt}
1

1− γ

≤ γT

1− γ
Nϵ +

∑
t∈Tϵ

1{Qt}(At +Bt + Ct) +
1

1− γ

∞∑
t=1

1{Qt}.

Consider now the indicator function forQt. Only when lτ ≤ l0 holds for some τ ∈ {t, . . . , t+ T − 1} isQt false, therefore
1{Qt} ≤

∑t+T−1
τ=t 1{lτ ≤ l0} =

∑⌊l0⌋
l=1

∑t+T−1
τ=t 1{lτ = l}. Combine this with the definition of klmax = limt→∞ klt =∑∞

τ=1 1{lτ ≤ l}2lτ−l in Lemma 6.1, the last addend above can be bounded by

1

1− γ

∞∑
t=1

1{Qt} ≤
1

1− γ

∞∑
t=1

⌊l0⌋∑
l=1

t+T−1∑
τ=t

1{lτ = l}

≤ T

1− γ

⌊l0⌋∑
l=1

∞∑
τ=1

1{lτ = l}

=
T

1− γ

⌊l0⌋∑
l=1

(
klmax −

1

2
kl−1
max

)

=
T

1− γ

(
k⌊l0⌋max +

1

2

⌊l0⌋−1∑
l=1

klmax

)
≤ T

1− γ
· l0 + 1

2
· 20dl0

=
10dT

1− γ
l0(l0 + 1),
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where the second inequality is based on the observation that each τ is visited in the last summation at most T times, and the
third inequality is according to the conclusions of Lemma 6.1. Hence we have the inequality

ϵNϵ ≤
γT

1− γ
Nϵ +

∑
t∈Tϵ

1{Qt}At +
∑
t∈Tϵ

1{Qt}Bt +
∑
t∈Tϵ

1{Qt}Ct +
10dT

1− γ
l0(l0 + 1). (A.8)

Part II: Upper Bounds for the Summation of At and Bt

For this next part, we bound the second and third terms on the right hand side of (A.8). First, for the sum of the term At, we
expand the expression to the following:

∑
t∈Tϵ

1{Qt}At =
∑
t∈Tϵ

t+T−1∑
τ=t

1{Qt}γτ−tΓ(τ)

≤
∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−tΓ(τ)

=
∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t

[
1

τ(τ + 1)
+ 3γ · 2l0−lτβlτ−1

]

≤
∑
t∈Tϵ

t+T−1∑
τ=t

γτ−t

τ(τ + 1)
+ 3

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t+12l0−lτβlτ−1. (A.9)

Regarding the first summation in (A.9), we shrink the τ ’s in the denominator to t:

∑
t∈Tϵ

t+T−1∑
τ=t

γτ−t

τ(τ + 1)
≤

∑
t∈Tϵ

t+T−1∑
τ=t

γτ−t

t(t+ 1)

=
∑
t∈Tϵ

1

t(t+ 1)

t+T−1∑
τ=t

γτ−t

≤
∑
t∈Tϵ

1

t(t+ 1)
· 1

1− γ

≤ 1

1− γ
. (A.10)

We hence obtain by substituting this into (A.9) that

∑
t∈Tϵ

At ≤
1

1− γ
+ 3

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t+12l0−lτβlτ−1. (A.11)

We leave the leftover part to be tackled in Part IV.

Second, we discard the indicator term in the sum of Bt and expand it to

∑
t∈Tϵ

1{Qt}Bt ≤
∑
t∈Tϵ

t+T−1∑
τ=t

γτ−t+1∆(τ)

=
∑
t∈Tϵ

T−1∑
n=0

γn+1∆(t+ n)

=
T−1∑
n=0

[ ∑
t∈Tϵ

γn+1
[
P(Vt+n − V π

t+n+1)(st+n, at+n)− (Vt+n − V π
t+n+1)(st+n+1)

]]
,
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where in the first equation we substitute n = τ − t, and in the second we exchange the ordering of summation.

Write Tϵ = {t1, t2, . . . , tNϵ
}, then for k = 1, . . . , Nϵ, the random variable tk is the k-th time step where the suboptimality

gap is larger than ϵ and hence a stopping time. Now for each individual n ≥ 0, let Fk,n be the σ-field generated by all
random variables before the generation of stk+n+1 in Line 9 of Algorithm 1 at time step tk + n. Then

{
P
(
Vtk+n − V π

tk+n+1

)
(stk+n, atk+n)−

(
Vtk+n − V π

tk+n+1

)
(stk+n+1)

}Nϵ

k=1

is a martingale sequence with respect to the filtration {Fk,n}Nϵ

k=0. Now notice the term (Vt+n − V π
t+n+1)(s) is bounded

within [−1/(1− γ), 1/(1− γ)], and therefore P
(
Vt+n − V π

t+n+1

)
(st+n, at+n)−

(
Vt+n − V π

t+n+1

)
(st+n+1) is bounded

within [−2/(1− γ), 2/(1− γ)]. Consequently, from Lemma D.1, with probability at least 1− δ/
(
2(n+ 1)(n+ 2)

)
, the

following holds:

∑
t∈Tϵ

[
P
(
Vt+n − V π

t+n+1

)
(st+n, at+n)−

(
Vt+n − V π

t+n+1

)
(st+n+1)

]
≤ 2

1− γ

√
2Nϵ log

(
2(n+ 1)(n+ 2)/δ

)
.

Taking a union bound, we have that with probability at least 1−
∑∞

n=0 δ/
(
2(n+ 1)(n+ 2)

)
= 1− δ/2, the subsequent

upper bound holds:

∑
t∈Tϵ

Bt =
T−1∑
n=0

[
γn+1

∑
t∈Tϵ

[
P(Vt+n − V π

t+n+1)(st+n, at+n)− (Vt+n − V π
t+n+1)(st+n+1)

]]

≤
T−1∑
n=0

γn+1 · 2

1− γ

√
2Nϵ log

(
2(n+ 1)(n+ 2)/δ

)
≤

T−1∑
n=0

2γn+1

1− γ

√
2Nϵ log

(
2T (T + 1)/δ

)
≤ 2γ

(1− γ)2

√
2Nϵ log

(
2T (T + 1)/δ

)
, (A.12)

where in the second inequality, we amplified the n+1 under the square roots to T . We denote the event where this inequality
holds as E2, then with probability at least 1− δ/2− δ/2 = 1− δ, the joint event E = E1 ∪ E2 holds.

Part III: Upper bound for the Summation of Ct

For the third part, we provide an upper bound for
∑

t∈Tϵ
Ct. Since this process is rather lengthy, we partition it into four

steps.

Step 1, we seek to obtain a bound for
(
Vt − Vt+1

)
(st+1). According to Line 7 of Algorithm 1, the two value functions

Vt, Vt+1 are results of Algorithm 2 from two consecutive time steps t and t+ 1.

Denote the variables Q
(u)
l , V (u) in Algorithm 2 at time step t by Q

(u)
l,t , V

(u)
t for iteration round u = 1, . . . , Ut and

t = 1, 2, . . .. Next for a fixed t, define Du := maxs∈S
[
V

(Ut−u)
t − V

(Ut+1−u)
t+1

]
(s). By the update rules of V and Q in
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respectively Line 3 and Line 6 of Algorithm 2, we now give the following derivations:

Du−1 = max
s∈S

[
V

(Ut−u+1)
t − V

(Ut+1−u+1)
t+1

]
(s)

= max
s∈S

[
max
a∈A

min
l≥1

Q
(Ut−u+1)
l,t (s, a)−max

a∈A
min
l≥1

Q
(Ut+1−u+1)
l,t+1 (s, a)

]
≤ max

s∈S,a∈A

[
min
l≥1

Q
(Ut−u+1)
l,t −min

l≥1
Q

(Ut+1−u+1)
l,t+1

]
(s, a)

≤ max
s∈S,a∈A,l≥1

[
Q

(Ut−u+1)
l,t −Q

(Ut+1−u+1)
l,t+1

]
(s, a)

= max
s,a,l

[(
r(s, a) + γ max

θ1∈Cl
t∩B

〈
θ1,ϕV

(Ut−u)
t

(s, a)
〉)
−

(
r(s, a) + γ max

θ2∈Cl
t+1∩B

〈
θ2,ϕ

V
(Ut+1−u)

t+1

(s, a)
〉)]

= γmax
s,a,l

[
max

θ1∈Cl
t∩B

〈
θ1,ϕV

(Ut−u)
t

(s, a)
〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕ

V
(Ut+1−u)

t+1

(s, a)
〉]
, (A.13)

where we used the trivial facts maxx∈X F (x)−maxx∈X G(x) ≤ maxx∈X (F−G)(x) and minx∈X F (x)−minx∈X G(x) ≤
maxx∈X (F −G)(x) in the inequalities above.

Next we denote for ease of expression that V1 = V
(Ut−u)
t , V2 = V

(Ut+1−u)
t+1 , and then separate the difference inside the

outer maximum in (A.13) into two parts:

max
θ1∈Cl

t∩B

〈
θ1,ϕV1

(s, a)
〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV2

(s, a)
〉

≤ max
θ1∈Cl

t∩B

〈
θ1,ϕV1(s, a)

〉
− max

θ1∈Cl
t∩B

〈
θ1,ϕV2(s, a)

〉
︸ ︷︷ ︸

J1

+ max
θ1∈Cl

t∩B

〈
θ1,ϕV2(s, a)

〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV2(s, a)

〉
︸ ︷︷ ︸

J2

.

Recall the definition of ϕV from Definition 3.1, the first part

J1 ≤ max
θ1∈Cl

t∩B

〈
θ1,

(
ϕV1 − ϕV2

)
(s, a)

〉
= max

θ1∈Cl
t∩B

〈
θ1,

∫
s′∈S

ϕ(s′|s, a)(V1 − V2)(s
′)ds′

〉
= max

θ1∈Cl
t∩B

∫
s′∈S

〈
θ1,ϕ(s

′|s, a)
〉
(V1 − V2)(s

′)ds′. (A.14)

By the definition of B in (3.4), for θ ∈ B, ⟨θ,ϕ(s′|s, a)⟩ is a probability distribution on S, which we now denote by
P̃ = ⟨θ,ϕ⟩. We then continue from (A.14):

J1 ≤ max
θ1∈Cl

t∩B,P̃=⟨θ1,ϕ⟩

∫
s′∈S

P̃(s′|s, a)(V1 − V2)(s
′)ds′

≤ max
θ1∈B,P̃=⟨θ1,ϕ⟩

Es′∼P̃(·|s,a)
[
(V1 − V2)(s

′)
∣∣s, a]

≤ max
θ1∈B,P̃=⟨θ1,ϕ⟩

max
s′∈S

(V1 − V2)(s
′)

= max
s′∈S

[
V

(Ut−u)
t − V

(Ut+1−u)
t+1

]
(s′), (A.15)

where in the second inequality we relaxed θ1 ∈ Clt ∩B to θ1 ∈ B, and the third inequality is due to the fact that the expected
value of a random variable is no greater than its maximum possible value. After that, the equation follows because the
variable θ1 is no longer tied to the value of (V1 − V2)(s

′).

For J2, we relax V2 = V
(Ut+1−u)
t+1 to an arbitrary function V : S → [0, 1/(1− γ)]:

J2 ≤ max
V :S→[0,1/(1−γ)]

[
max

θ1∈Cl
t∩B

〈
θ1,ϕV (s, a)

〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV (s, a)

〉]
. (A.16)
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Now substitute (A.15) and (A.16) into (A.13):

Du−1 ≤ γmax
s,a,l

(J1 + J2)

≤ γmax
s,a,l

[
max
s′∈S

(
V

(Ut−u)
t − V

(Ut+1−u)
t+1

)
(s′)

+ max
V :S→[0,1/(1−γ)]

(
max

θ1∈Cl
t∩B

〈
θ1,ϕV (s, a)

〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV (s, a)

〉)]
= γmax

s′∈S

[
V

(Ut−u)
t − V

(Ut+1−u)
t+1

]
(s′) + γ max

s,a,l,V

[
max

θ1∈Cl
t∩B

〈
θ1,ϕV (s, a)

〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV (s, a)

〉]
= γDu + γ max

s,a,l,V

[
max

θ1∈Cl
t∩B

〈
θ1,ϕV (s, a)

〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV (s, a)

〉]
,

where the first equation holds because the first term in the big bracket is independent of the variables s, a, l, and the final
equation holds based on the definition of Du. Further note that according to Algorithm 1, the confidence sets at levels lower
than lt are not updated from t to t+ 1, and hence these confidence sets are identical for the two runs of ML-EVI. Therefore,
we may exclude these smaller levels in the outside maximization above, and deduce

Du−1 ≤ γDu + γ max
s,a,l≥lt,V

[
max

θ1∈Cl
t∩B

〈
θ1,ϕV (s, a)

〉
− max

θ2∈Cl
t+1∩B

〈
θ2,ϕV (s, a)

〉]
. (A.17)

Step 2, for a given ψ = ϕV (s, a), we consider the expression in (A.17) inside the outer maximum, namely
maxθ1∈Cl

t∩B
〈
θ1,ψ

〉
−maxθ2∈Cl

t+1∩B
〈
θ2,ψ

〉
.

Suppose θ̃1 := argmax
θ1∈Cl

t∩B⟨θ1,ψ⟩. If θ̃1 ∈ Clt+1, we immediately have maxθ1∈Cl
t∩B⟨θ1,ψ⟩ = ⟨θ̃1,ψ⟩ ≤

maxθ2∈Cl
t+1∩B⟨θ2,ψ⟩ and the expression of interest is upper bounded by 0. Otherwise when θ̃1 /∈ Clt+1, consider

µmax = sup{µ : θ∗ + µ(θ̃1 − θ∗) ∈ Clt+1 ∩ B}.

According to Lemma A.3, B is a convex body with non-empty interior when constrained to the affine subspace L ⊂ Rd.
Combine this with θ∗, θ̃1 ∈ B, we see the segment J ⊂ Rd with θ∗ and θ̃1 as endpoints is contained by B. Since Clt+1 is a
closed ellipsoid and hence a convex body in Rd, its intersection with B must also be a convex body when constrained to
L. Furthermore, by the conclusions of Lemma 6.2, θ∗ is an inner point in Clt+1 under E1, so the intersection of Clt+1 and
J must be a nontrivial segment J ′. Since the set {θ = θ∗ + µ(θ̃1 − θ∗) ∈ Clt+1 ∩ B}, as the intersection of a line and a
convex set, contains J ′, the set {µ : θ∗ + µ(θ̃1 − θ∗) ∈ Clt+1 ∩ B} must be a non-trivial closed interval I on R.

Since θ∗ ∈ Clt+1 ∩ B under E1 and θ̃1 /∈ Clt+1 by our earlier assumption, we have 0 ∈ I and 1 /∈ I, and therefore
0 ≤ µmax < 1. Now define θ̃2 := θ∗ + µmax(θ̃1 − θ∗) ∈ Clt+1 ∩ B, and obtain:

max
θ1∈Cl

t∩B
⟨θ1,ψ⟩ − max

θ2∈Cl
t+1∩B

⟨θ2,ψ⟩ = ⟨θ̃1,ψ⟩ − max
θ2∈Cl

t+1∩B
⟨θ2,ψ⟩

≤ ⟨θ̃1,ψ⟩ − ⟨θ∗ + µmax(θ̃1 − θ∗),ψ⟩

= (1− µmax)⟨θ̃1 − θ∗,ψ⟩. (A.18)

It is worth noting that the second multiplier ⟨θ̃1 − θ∗,ψ⟩ is non-negative based on the definition of θ̃1.

Next, we start with giving a bound for the second multiplier. Since θ̃1 ∈ B, we have P̃(·|s, a) = ⟨θ̃1,ϕ(·|s, a)⟩ is a
probability function for arbitrary s ∈ S, a ∈ A, and therefore

⟨θ̃1 − θ∗,ψ⟩ = ⟨θ̃1,ψ⟩ − ⟨θ∗,ψ⟩

= P̃V (s, a)− PV (s, a)

≤ 1

1− γ
, (A.19)
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where we used 0 ≤ V (s) ≤ 1/(1− γ) for arbitrary s ∈ S .

Now we focus on µmax. By its definition, we have θ̃2 = θ∗ + µmax(θ̃1 − θ∗) ∈ ∂L(Clt+1 ∩ B). If θ̃2 ∈ ∂LB, since for
0 ≤ µ < µmax, θ∗+µ(θ̃1−θ∗) ∈ B, we can deduce that for any µ > µmax that θ∗+µ(θ̃1−θ∗) /∈ B. Because µmax < 1,
this leads to θ̃1 = θ∗ + 1 · (θ̃1 − θ∗) /∈ B, a contradiction. Otherwise θ̃2 ∈ ∂LClt+1 ⊂ ∂Clt+1, which implies

βl = ∥θ̃2 − θ̂lt+1∥Σl
t+1

= ∥µmaxθ̃1 + (1− µmax)θ
∗ − θ̂lt+1∥Σl

t+1

= ∥µmax(θ̃1 − θ̂lt+1) + (1− µmax)(θ
∗ − θ̂lt+1)∥Σl

t+1

≤ µmax∥θ̃1 − θ̂lt+1∥Σl
t+1

+ (1− µmax)∥θ∗ − θ̂lt+1∥Σl
t+1

≤ µmax∥θ̃1 − θ̂lt+1∥Σl
t+1

+ (1− µmax) ·
1

2
βl, (A.20)

where we used the triangle inequality in the first inequality, and the conclusion of Lemma 6.2 in the second inequality.

Moving the second addend on the right hand side of (A.20) to the left hand side, we get

1

2
(1 + µmax)β

l ≤ µmax∥θ̃1 − θ̂lt+1∥Σl
t+1

≤ 1

2
(1 + µmax)∥θ̃1 − θ̂lt+1∥Σl

t+1
, (since µmax ≤ 1)

which leads to the conclusion βl ≤ ∥θ̃1 − θ̂lt+1∥Σl
t+1

. We thus detract from ∥θ̃1 − θ̂lt+1∥Σl
t+1

both sides of (A.20) and
obtain

∥θ̃1 − θ̂lt+1∥Σl
t+1
− βl ≥ (1− µmax)×

(
∥θ̃1 − θ̂lt+1∥Σl

t+1
− 0.5βl

)
≥ (1− µmax) · 0.5βl,

which yields

1− µmax ≤
∥θ̃1 − θ̂lt+1∥Σl

t+1
− βl

0.5βl

= 2∥θ̃1 − θ̂lt+1∥Σl
t+1

/βl − 2. (A.21)

Step 3, we now set out to bound ∥θ̃1 − θ̂lt+1∥Σl
t+1

, aiming to prove it is close to βl. In preparation, we first list the
following relations between the variables based on the expressions given in Lemma A.1: Σl

t+1 = Σl
t + 2lt−lϕ0ϕ

⊤
0 ,

bl
t+1 = bl

t + 2lt−lϕ0V0, where ϕ0 := ϕVt(st, at), V0 := Vt(st+1). We also have θ̂lτ = (Σl
τ )

−1bl
τ , τ = t, t+ 1. Now we

break up the value using the triangle inequality:

∥θ̃1 − θ̂lt+1∥Σl
t+1
≤ ∥θ̃1 − θ̂lt∥Σl

t+1
+ ∥θ̂lt − θ̂lt+1∥Σl

t+1
. (A.22)

We expand the first norm in order to use the relation ∥θ̃1 − θ̂lt∥Σl
t
≤ βl for an upper bound, specifically:

∥θ̃1 − θ̂lt∥2Σl
t+1

= (θ̃1 − θ̂lt)⊤Σl
t+1(θ̃1 − θ̂lt)

= (θ̃1 − θ̂lt)⊤(Σl
t + 2lt−lϕ0ϕ

⊤
0 )(θ̃1 − θ̂lt)

= (θ̃1 − θ̂lt)⊤Σl
t(θ̃1 − θ̂lt) + 2lt−l

[
ϕ⊤

0 (θ̃1 − θ̂lt)
]2

≤ ∥θ̃1 − θ̂lt∥2Σl
t
+ 2lt−l

[
∥θ̃1 − θ̂lt∥Σl

t
· ∥ϕ0∥(Σl

t)
−1

]2
(Cauchy-Schwartz)

≤ (βl)2 + 2lt−l(βl)2∥ϕ0∥2(Σl
t)

−1 . (A.23)
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For the second norm, the vector is the difference between two confidence set centers. We tackle this difference by extracting
(Σl

t+1)
−1 from both centers:

θ̂lt − θ̂lt+1 = (Σl
t)

−1bl
t − (Σl

t+1)
−1bl

t+1

= (Σl
t+1)

−1
[
Σl

t+1(Σ
l
t)

−1bl
t − bl

t+1

]
= (Σl

t+1)
−1

[
(Σl

t + 2lt−lϕ0ϕ
⊤
0 )(Σ

l
t)

−1bl
t − (bl

t + 2lt−lϕ0V0)
]

= (Σl
t+1)

−1
[
bl
t + 2lt−l

(
ϕ⊤

0 (Σ
l
t)

−1bl
t

)
ϕ0 − bl

t − 2lt−lV0ϕ0

]
= 2lt−l

(
ϕ⊤

0 (Σ
l
t)

−1bl
t − V0

)
(Σl

t+1)
−1ϕ0. (A.24)

Substitute the results (A.23) and (A.24) back into (A.22):

∥θ̃1 − θ̂lt+1∥Σl
t+1
≤

√
(βl)2 + 2lt−l(βl)2∥ϕ0∥2(Σl

t)
−1 + ∥2lt−l

(
ϕ⊤

0 (Σ
l
t)

−1bl
t − V0

)
(Σl

t+1)
−1ϕ0∥Σl

t+1

= βl
√

1 + 2lt−l∥ϕ0∥2(Σl
t)

−1 + 2lt−l
∣∣ϕ⊤

0 (Σ
l
t)

−1bl
t − V0

∣∣∥(Σl
t+1)

−1ϕ0∥Σl
t+1

≤ βl
(
1 + 2lt−l−1∥ϕ0∥2(Σl

t)
−1

)
+ 2lt−l

∣∣ϕ⊤
0 θ̂

l
t − V0

∣∣∥ϕ0∥(Σl
t+1)

−1 , (A.25)

where we used the trivial inequality
√
1 + x ≤ 1 + x/2 for any x ≥ 0 in the last relation.

To tackle the right hand side of (A.25), we need to provide an upper bound for ∥ϕ0∥(Σl
τ )

−1 , where τ = t, t+ 1. First we
have trivially that Σl

t+1 ⪰ Σl
t. Furthermore, by the alternative definition of Σl

t given in Lemma A.1, we can see based on
l ≥ lt that when lt > 1,

Σl
t = λI+

t−1∑
τ=1

1{lτ ≤ l}2lτ−lϕVτ (sτ .aτ )ϕVτ (sτ .aτ )
⊤

⪰ λI+
t−1∑
τ=1

1{lτ ≤ lt − 1}2lτ−lϕVτ
(sτ .aτ )ϕVτ

(sτ .aτ )
⊤

= λI+ 2lt−l−1
t−1∑
τ=1

1{lτ ≤ lt − 1}2lτ−lt+1ϕVτ
(sτ .aτ )ϕVτ

(sτ .aτ )
⊤

⪰ 2lt−l−1Σlt−1
t .

The above relations lead to ∥ϕ0∥(Σl
t+1)

−1 ≤ ∥ϕ0∥(Σl
t)

−1 ≤ ∥ϕ0∥(2lt−l−1Σ
lt−1
t )−1 = 2(l−lt+1)/2∥ϕ0∥(Σlt−1

t )−1 ≤
2(l−lt+1)/2 · 2−lt+1

√
d/(1− γ) = 2(l−3lt+3)/2

√
d/(1− γ), where the lt selection rule in Lines 10 to 13 of Algorithm 1

yields the last inequality. Recall our definition of l0 from Lemma 6.1, we have shown that when lt > 1,

∥ϕ0∥(Σl
t+1)

−1 ≤ 2(l+2l0−3lt+3)/2. (A.26)

Note that in the special case where lt = 1, we have trivially ∥ϕ0∥(Σl
t+1)

−1 ≤ ∥ϕ0∥λ−1I = λ−1/2∥ϕ0∥2 ≤
√
d/(1−γ) = 2l0 ,

and (A.26) still holds.

Apart from this, we also need to bound
∣∣ϕ⊤

0 θ̂
l
t − V0

∣∣ in (A.25). Since PVt(st, at) = ⟨θ∗,ϕVt(st, at)⟩ from (3.3), we have∣∣ϕ⊤
0 θ̂

l
t − V0

∣∣ = ∣∣⟨θ̂lt,ϕ0⟩ − Vt(st+1)
∣∣

=
∣∣⟨θ̂lt,ϕ0⟩ − ⟨θ∗,ϕ0⟩+ PVt(st, at)− Vt(st+1)

∣∣
≤ |⟨θ̂lt − θ∗,ϕ0⟩|+

∣∣PVt(st, at)− Vt(st+1)
∣∣ (triangle inequality)

≤ ∥θ∗ − θ̂lt∥Σl
t
· ∥ϕ0∥(Σl

t)
−1 +

∣∣Es′∼P(·|st,at)Vt(s
′)− Vt(st+1)

∣∣ (Cauchy-Schwartz)

≤ 1

2
βl∥ϕ0∥(Σl

t)
−1 +

1

1− γ
, (A.27)
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where in the last inequality we used the conclusion of Lemma 6.2 and 0 ≤ Vt(s) ≤ 1/(1− γ).

Now we turn back to (A.25). Implementing the inequalities (A.26) and (A.27) in the right hand side, we obtain

∥θ̃1 − θ̂lt+1∥Σl
t+1
≤ βl

(
1 + 2lt−l−1∥ϕ0∥2(Σl

t)
−1

)
+ 2lt−l

(
1

2
βl∥ϕ0∥(Σl

t)
−1 +

1

1− γ

)
∥ϕ0∥(Σl

t)
−1

= βl + 2lt−l

(
1

2
βl∥ϕ0∥2(Σl

t)
−1 +

1

2
βl∥ϕ0∥2(Σl

t)
−1 +

1

1− γ
∥ϕ0∥(Σl

t)
−1

)
≤ βl + 2lt−l

(
βl2l+2l0−3lt+3 +

1

1− γ
2(l+2l0−3lt+3)/2

)
= βl

(
1 + 22l0−2lt+3 +

(
1/(1− γ)βl

)
· 2l0−(l+lt−3)/2

)
≤ βl

(
1 + 22l0−2lt+3 + (1/6

√
d) · 2l0−lt+3/2

√
d

)
≤ βl

(
1 + 22l0−2lt+3 + 2l0−lt/2

√
d

)
, (A.28)

where the third inequality is due to l ≥ lt and the definition of βl from (5.1), which leads to (1− γ)βl ≥ 6
√
dl ≥ 6

√
d.

Step 4, we are putting everything together. Substituting (A.28) into (A.21), and then into (A.18) together with (A.19), we
have

max
θ1∈Cl

t∩B
⟨θ1,ψ⟩ − max

θ2∈Cl
t+1∩B

⟨θ2,ψ⟩ ≤ (1− µmax)⟨θ̃1 − θ∗,ψ⟩

≤
(
2∥θ̃1 − θ̂lt+1∥Σl

t+1
/βl − 2

)
· 1

1− γ

≤
(
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
)
· 1

1− γ
.

Now substitute the above inequality into (A.17) to get Du−1 ≤ γDu+
(
γ/(1−γ)

)
·
[
22l0−2lt+4+2l0−lt+1.5/3

√
d
]
. Recalling

from (5.1) that Ut+1 ≥ Ut, and from (A.5) that γUt ≤ 1/
(
t(t+ 1)

)
, along with the trivial bound for DUt ≤ 1/(1− γ), we

iterate this inequality for Du over u = 1, . . . , Ut to obtain:

D0 ≤ γUtDUt +

Ut∑
u=1

γu

1− γ
·
[
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
]

≤ 1

t(t+ 1)
· 1

1− γ
+

1

1− γ
·
[
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
] Ut∑
u=1

γu

≤ 1

(1− γ)t(t+ 1)
+

γ

(1− γ)2
[
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
]
.

Combining this with Vt(st+1)− Vt+1(st+1) = V
(Ut)
t (st)− V

(Ut+1)
t+1 (st) ≤ D0, we can now bound the sum of Ct by

∑
t∈Tϵ

1{Qt}Ct =
∑
t∈Tϵ

t+T−1∑
τ=t

1{Qt}γτ−t+1(Vτ − Vτ+1)(sτ+1)

≤
∑
t∈Tϵ

t+T−1∑
τ=t

1{Qt}γτ−t+1

[
1

(1− γ)τ(τ + 1)
+

γ

(1− γ)2
[
22l0−2lτ+4 + 2l0−lτ+1.5/3

√
d
]]

≤ γ

1− γ

∑
t∈Tϵ

t+T−1∑
τ=t

γτ−t

τ(τ + 1)
+

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}
γτ−t+2

(1− γ)2
[
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
]

≤ γ

(1− γ)2
+

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}
γτ−t+2

(1− γ)2
[
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
]
, (A.29)
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where in the third inequality we relaxed the indicator function 1{Qt} to 1 and 1{lτ > l0} for the two summations
respectively. The final inequality is due to (A.10).

Part IV: Final Arrangements

We now combine the three bounds for the sums of At, Bt, Ct, namely (A.11), (A.12) and (A.29), and substitute them into
(A.8) to obtain

ϵNϵ ≤
γT

1− γ
Nϵ +

[
1

1− γ
+ 3

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t+12l0−lτβlτ−1

]
+

2γ

(1− γ)2

√
2Nϵ log

(
2T (T + 1)/δ

)
+

[
γ

(1− γ)2
+

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}
γτ−t+2

(1− γ)2
[
22l0−2lt+4 + 2l0−lt+1.5/3

√
d
]]

+
10dT

1− γ
l0(l0 + 1)

=
γT

1− γ
Nϵ +

2γ

(1− γ)2

√
2Nϵ log

(
2T (T + 1)/δ

)
+

1

(1− γ)2
+

10dT

1− γ
l0(l0 + 1)

+
∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t

[
3γ2l0−lτβlτ−1 +

16γ3

(1− γ)2
· 22l0−2lt +

2
√
2γ2

3(1− γ)2
√
d
· 2l0−lt

]
. (A.30)

We will now focus on the second half of (A.30). More generally, we present an upper bound for the term∑
t∈Tϵ

∑t+T−1
τ=t 1{lτ > l0}γτ−tηl0−lτ f(lτ − 1) in the following, where f : R+ → R is of the form f(x) = c1

√
x+ c2,

c1, c2 ≥ 0, and 2 ≤ η ≤ 4. We do this by using indicator functions to break up the summation, namely:

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−tηl0−lτ f(lτ − 1)

=
∑
t∈Tϵ

t+T−1∑
τ=t

∞∑
l=⌊l0⌋+1

γτ−tηl0−lf(l − 1)1{l = lτ}

=

T−1∑
n=0

∞∑
τ=1+n

∞∑
l=⌊l0⌋+1

γnηl0−lf(l − 1)1{l = lτ}1{τ − n ∈ Tϵ}

=

T−1∑
n=0

γn
∞∑

l=⌊l0⌋+1

ηl0−lf(l − 1)

∞∑
τ=1+n

1{l = lτ}1{τ − n ∈ Tϵ}

≤
T−1∑
n=0

γn
∞∑

l=⌊l0⌋+1

ηl0−lf(l − 1)min

{ ∞∑
τ=1+n

1{l = lτ},
∞∑

τ=1+n

1{τ − n ∈ Tϵ}
}

≤
T−1∑
n=0

γn
∞∑

l=⌊l0⌋+1

ηl0−lf(l − 1)min{klmax, Nϵ}

≤ 1

1− γ

∞∑
l=⌊l0⌋+1

ηl0−lf(l − 1)min{20dl4l−l0 , Nϵ}, (A.31)

where: in the first equation we expanded 1{lτ > l0} into
∑

l>l0
1{l = lτ}; in the second equation we used the variable

n = τ − t to replace t, which adds a multiplier 1{t := τ − n ∈ Tϵ} to the expression under summation; in the second to
last inequality we used the definition of klmax from Lemma 6.1 and the definition Nϵ = #Tϵ; the last inequality is due to
Lemma 6.1.

Ideally, we can determine an exact threshold integer value L′
0 = max{l > l0 : 20dl4l−l0 ≤ Nϵ}, and take the correct

minimization in (A.31) for all l ∈ Z, yet this will intensely complicate our deductions. Instead, we will set a undetermined
threshold value L0, under which the minimization takes the upper bound 20dl4l−l0 , and above which the minimization takes
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the upper bound Nϵ:∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−tηl0−lτ f(lτ − 1)

≤ 1

1− γ

L0∑
l=⌊l0⌋+1

ηl0−lf(l − 1) · 20dl4l−l0 +
1

1− γ

∞∑
l=L0+1

ηl0−lf(l − 1)Nϵ

≤ 1

1− γ
· f(L0 − 1) · 20dL0

L0∑
l=⌊l0⌋+1

ηl0−l4l−l0 +
Nϵ

1− γ

∞∑
l=L0+1

ηl0−lf(l − 1)

=
20d

1− γ
L0f(L0 − 1)

L0∑
l=⌊l0⌋+1

(4/η)l−l0 +
Nϵ

1− γ

∞∑
l=L0+1

ηl0−l
(
c1
√
l − 1 + c2

)
, (A.32)

where the second inequality holds because f(l − 1) · 20dl is increasing in l, and in the equation we plugged in f(x) =
c1
√
x+ c2.

To tackle the second half of (A.32), gather from the first conclusion of Lemma D.3 that
∑∞

l=L ηl0−l
√
l ≤√

L+ 1ηl0−L+1/(η − 1), which leads to the upper bound
∞∑

l=L0+1

ηl0−l
(
c1
√
l − 1 + c2

)
= c2

∞∑
l=L0+1

ηl0−l + c1

∞∑
l=L0

ηl0−l−1
√
l

≤
(
c2 + c1

√
L0 + 1

)
ηl0−L0/(η − 1)

= f(L0 + 1)ηl0−L0/(η − 1). (A.33)

Substituting (A.33) into (A.32), we have∑
t∈Tϵ

t+T−1∑
τ=t

γτ−tηl0−lτ f(lτ − 1) ≤ 20d

1− γ
L0f(L0 − 1)

L0∑
l=⌊l0⌋+1

(4/η)l−l0 +
Nϵ

1− γ
f(L0 + 1)ηl0−L0/(η − 1)

≤ f(L0 + 1)

1− γ

[
20dL0

L0∑
l=⌊l0⌋+1

(4/η)l−l0 +Nϵη
l0−L0/(η − 1)

]
, (A.34)

where for the second inequality, we used the fact f(L0 − 1) ≤ f(L0 + 1) due to c1 ≥ 0.

Now we go back to consider the second half of (A.30). With βl = 2
(
3
√
dl + 2

√
log(1/δ)

)
/(1− γ) + 2

√
dλ, we can take

η = 2, 4 in (A.34) to get∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t

[
3γ2l0−lτβlτ−1 +

16γ3

(1− γ)2
· 22l0−2lt +

2
√
2γ2

3(1− γ)2
√
d
· 2l0−lt

]

=
∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t2l0−lτ

[
3γβlτ−1 +

2
√
2γ2

3(1− γ)2
√
d

]
+

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t4l0−lτ · 16γ3

(1− γ)2

≤ 1

1− γ

(
3γβL0+1 +

2
√
2γ2

3(1− γ)2
√
d

)(
20dL0

L0∑
l=⌊l0⌋+1

2l−l0 +Nϵ2
l0−L0

)

+
16γ3

(1− γ)3

(
20dL0

L0∑
l=⌊l0⌋+1

1 +Nϵ4
l0−L0/3

)

≤
(
3βL0+1

1− γ
2l0−L0 +

2
√
2

3(1− γ)3
√
d
2l0−L0 +

16

3(1− γ)3
4l0−L0

)
Nϵ

+

(
3βL0+1

1− γ
2L0−l0+1 +

2
√
2

3(1− γ)3
√
d
2L0−l0+1 +

16

(1− γ)3
L0

)
· 20dL0, (A.35)
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where in the last inequality we we used γ ≤ 1 to get rid of all the excess γ’s.

Now take

T :=
⌈
log

3

(1− γ)ϵ

/
(1− γ)

⌉
,

and

L0 :=

⌈
l0 + log

(
M +K

√
2 log(M +K)/ log 2 + 2(l0 + 1)

)/
log 2

⌉
,

where

M =
3

ϵ
·
[

1

(1− γ)3
√
d
+

12
√
log(1/δ)

(1− γ)2
+

6
√
dλ

1− γ

]
,

K =
54
√
d

(1− γ)2ϵ
.

It is not hard to check that

L0 = O

(
log

d log(1/δ)

(1− γ)

)
+O

(
log

1

ϵ

)
,

where we separated the term log(1/ϵ) since the maximum possible value of ϵ ≤ 1 − γ is dependent on the parameter
γ. In the third conclusion of Lemma D.3, by taking a = 2l0+1M and b = 2l0+1K, we have L0 + 1 = ⌈log(a +
b
√
2 log(a+ b)/ log 2)/ log 2⌉, and hence

2L0−l0 ≥ 2−l0−1(a+ b
√
L0 + 1)

= M +K
√
L0 + 1

=
3

ϵ
·
[

1

(1− γ)3
√
d
+

12
√
log(1/δ)

(1− γ)2
+

6
√
dλ

1− γ
+

18
√
d

(1− γ)2

√
L0 + 1

]
=

3

ϵ
·
[

1

(1− γ)3
√
d
+

3βL0+1

1− γ

]
,

where the final equation is due to the definition of βl in (5.1). As a side effect of the second to last expression above, we
have the relation 2L0−l0 ≥ 3(6 + 18

√
2)
√
d due to ϵ ≤ 1/(1− γ), λ ≥ 1 and L0 ≥ 1. On the other hand, we have an upper

bound of similar composition:

2L0−l0 ≤ 2
[
M +K

√
2 log(M +K)/ log 2 + 2l0 + 2

]
≤ 2

[
M +K

√
2L0 + 2

]
=

6

ϵ
·
[

1

(1− γ)3
√
d
+

12
√

log(1/δ)

(1− γ)2
+

6
√
dλ

1− γ
+

18
√
2d

(1− γ)2

√
L0 + 1

]
,

where in the second inequality we used the relation L0 ≥ log(M +K)/ log 2.
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We now substitute the two inequalities above into (A.35):

∑
t∈Tϵ

t+T−1∑
τ=t

1{lτ > l0}γτ−t

[
3γ2l0−lτβlτ−1 +

16γ3

(1− γ)2
· 22l0−2lt +

2
√
2γ2

3(1− γ)2
√
d
· 2l0−lt

]

≤
(
3βL0+1

1− γ
+

2
√
2

3(1− γ)3
√
d
+

16

3(1− γ)3
· 1

3(6 + 18
√
2)
√
d

)
2l0−L0Nϵ

+

(
3βL0+1

1− γ
+

2

3(1− γ)3
√
d

)
· 20dL02

L0−l0 +
320dL2

0

(1− γ)3

≤ ϵ

3
Nϵ + 20dL0 ·

6

ϵ

[
1

(1− γ)3
√
d
+

12
√

log(1/δ)

(1− γ)2
+

6
√
dλ

1− γ
+

18
√
2d

(1− γ)2

√
L0 + 1

]
×
(

2
√
2

3(1− γ)3
√
d
+

12
√
log(1/δ)

(1− γ)2
+

6
√
dλ

1− γ
+

18
√
d

(1− γ)2

√
L0 + 1

)
+

320dL2
0

(1− γ)3

≤ ϵ

3
Nϵ + 120dL0/ϵ ·

√
12 + 122 + 62 + (18

√
2)2 ·

√
(2
√
2/3)2 + 122 + 62 + 182

×
[

1

(1− γ)6d
+

log(1/δ)

(1− γ)4
+

dL0

(1− γ)4
+

dλ

(1− γ)2

]
+

320dL2
0

(1− γ)3

≤ ϵ

3
Nϵ + CdL0/ϵ ·

[
1

(1− γ)6d
+

log(1/δ)

(1− γ)4
+

dL0

(1− γ)4
+

dλ

(1− γ)2

]
, (A.36)

where: the second inequality is partly due to 2
√
2/3 + 16/9(6 + 18

√
2) ≤ 1; we used the standard Cauchy-Schwartz

inequality in the third inequality; for the last expression, C is an absolute constant.

Besides, by the definition of T ,

γT ≤
(
γ1/(1−γ)

)log[3/(1−γ)ϵ]

≤ exp
[
− log

(
3/(1− γ)ϵ

)]
≤ (1− γ)ϵ/3.

We then bring this and (A.36) back to (A.30):

ϵNϵ ≤
ϵ

3
Nϵ +

2γ

(1− γ)2

√
2Nϵ log

(
2T (T + 1)/δ

)
+

1

(1− γ)2
+

10dT

1− γ
l0(l0 + 1)

+
ϵ

3
Nϵ +

CdL0

ϵ

[
1

(1− γ)6d
+

log(1/δ)

(1− γ)4
+

dL0

(1− γ)4
+

dλ

(1− γ)2

]
.

We go on to move the two terms (ϵ/3)Nϵ to the left hand side, then multiply both sides by the factor 3/ϵ, thus transforming
the above inequality into (after erasing yet another γ from the first term):

Nϵ ≤
6

(1− γ)2ϵ

√
2 log

(
2T (T + 1)/δ

)√
Nϵ +

3

(1− γ)2ϵ
+

30dT

(1− γ)ϵ
l0(l0 + 1)

+
3C

ϵ2
·
[

L0

(1− γ)6
+

d log(1/δ)L0 + d2L2
0

(1− γ)4
+

d2λL0

(1− γ)2

]
.

Using the second conclusion in Lemma D.3, which states that x− a
√
x ≤ b⇒ x ≤ a2 + 2b for positive real numbers a, b,
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we see the above inequality implies

Nϵ ≤
[

6

(1− γ)2ϵ

√
2 log

(
2T (T + 1)/δ

)]2
+

6

(1− γ)2ϵ
+

60dT

(1− γ)ϵ
l0(l0 + 1)

+
6C

ϵ2
·
[

L0

(1− γ)6
+

d log(1/δ)L0 + d2L2
0

(1− γ)4
+

d2λL0

(1− γ)2

]
= O

(
L0

(1− γ)6ϵ2
+

d log(1/δ)L0 + d2L2
0 + log T

(1− γ)4ϵ2
+

d2λL0

(1− γ)2ϵ2
+

dl20 log
(
1/(1− γ)ϵ

)
(1− γ)2ϵ

)
= Õ

(
1

(1− γ)6ϵ2
+

d2 + d log(1/δ)

(1− γ)4ϵ2

)
,

which concludes the proof.

A.2. Proof of Corollary 5.3

Proof. Theorem 3 of Dann et al. (2017) states that if an algorithm is uniform-PAC with sample complexity Γ(ϵ, δ) =

Õ(C1/ϵ+C2/ϵ
2) for some δ > 0, then with probability at least 1− δ, its regret is bounded by Õ(

√
C2T +max{C1, C2}).

Taking C1 = 0, C2 = 1/(1− γ)3 +
(
d+

√
d log(1/δ)

)
/(1− γ)2, and discarding the non-dominating terms without

√
T ,

this suggests that our algorithm has a high probability regret bound of

Regret(T ) = Õ

(
d+

√
d log(1/δ)

(1− γ)2

√
T +

√
T

(1− γ)3

)
. (A.37)

B. Proof of Lemmas in Section 6
In this section, we focus on the lemmas presented in Section 6 and give detailed proofs for each of them.

B.1. Proof of Lemma 6.1

Proof of Lemma 6.1. By Definition 3.1, we have ∥ϕVt(st, at)∥2 ≤
√
d · 1/(1− γ). Take {Xt} = {2(lτ−l)/2ϕVτ (sτ , aτ ) :

τ ≥ 1, lτ ≤ l}, V = λI and L =
√
d/(1− γ) which, considering Lemma A.1, means that

V t′ = λI+
t∑

τ=1

1{lτ ≤ l}2lτ−lϕVτ
(sτ , aτ )ϕVτ

(sτ , aτ )
⊤

= Σl
t+1,

where t′ =
∑t

τ=1 1{lτ ≤ l}. We can thus deduce from Lemma 11 of Abbasi-Yadkori et al. (2011) the following:

t−1∑
τ=1

1{lτ ≤ l}min
{
2lτ−l∥ϕVτ

(sτ , aτ )∥2(Σl
τ )

−1 , 1
}
≤ 2 log

det(Σl
t)

det(λI)
. (B.1)

On one hand, from Lines 10 to 13 of algorithm 1, we have when lt = l and lt ̸= Lt + 1, ∥ϕVt(st, at)∥(Σl
t)

−1 ≥
2−l
√
d/(1 − γ). Combine this with the definition klt =

∑t−1
τ=1 1{lτ ≤ l}2lτ−l and the observation that lt = l = Lt + 1

happens exactly once for each level l, we have that when t is large enough, the left hand side of inequality (B.1) can be
lower bounded by

t−1∑
τ=1

1{lτ ≤ l}min
{
2lτ−l∥ϕVτ (sτ , aτ )∥2(Σl

τ )
−1 , 1

}
≥

t−1∑
τ=1

1{lτ = l, Lτ + 1 ̸= l}min
{
2lτ−l · 2−2ld/(1− γ)2, 1

}
=

[ t−1∑
τ=1

1{lτ = l, Lτ + 1 ̸= l}
]
min

{
4−ld/(1− γ)2, 1

}
=

(
klt −

1

2
kl−1
t − 1

)
min

{
4l0−l, 1

}
.
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On the other hand, for the upper bound of the right hand side of (B.1), notice that

det(Σl
t) ≤

[
tr(Σl

t)

d

]d
=

[
dλ+

∑t−1
τ=1 1{lτ ≤ l}2lτ−l tr

[
ϕVτ

(sτ , aτ )ϕVτ
(sτ , aτ )

⊤]
d

]d
≤

[
dλ+ klt · d/(1− γ)2

d

]d
=

(
λ+ klt/(1− γ)2

)d
, (B.2)

where the second inequality holds because tr
[
ϕVt

(st, at)ϕVt
(st, at)

⊤] = ∥ϕVt
(st, at)∥22 ≤ d/(1−γ)2. Substituting these

bounds into (B.1), we have

(
klt −

1

2
kl−1
t − 1

)
min

{
4l0−l, 1

}
≤ 2 log

(λ+ klt/(1− γ)2)d

λd

≤ 2d log
(
1 + klt/(1− γ)2

)
, (B.3)

where in the second inequality we used λ ≥ 1.

The above inequality immediately implies that klt is finite for arbitrary t, l. Take t→∞, we can replace the suffixes t in
(B.3) by∞. Next we consider two separate cases of l.

First consider the case l ≤ l0, where (B.3) becomes

klmax −
1

2
kl−1
max − 1 ≤ 2d log

(
1 + klmax/(1− γ)2

)
.

We will prove through induction on l that

klmax ≤ 20dl0. (B.4)

Note that (B.4) holds trivially for l = 0. Now suppose (B.4) already holds for l − 1. Then

klmax − 2d log
(
1 + klmax/(1− γ)2

)
≤ 1

2
· 20dl0 + 1.

By viewing klmax as a variable and differentiating on it, we see the left hand side is increasing for klmax > 2d. It is evident
from (B.4) that the desired upper bound is indeed greater than 2d, hence we only need to prove that the above inequality
does not hold when klmax is above this upper bound, in other words

20dl0 − 2d log
(
1 + 20dl0/(1− γ)2

)
≥ 10dl0 + 1.

Substitute 4l0 = d/(1− γ)2 and move the first term on the right to the left, this is equivalent to

10dl0 − 2d log
(
1 + 20l0 · 4l0

)
≥ 1.

The left hand side

d
[
10l0 − 2 log

(
1 + 20l0 · 4l0

)]
≥ 10l0 − 2 log(1/4 + 20)− 2 log

(
l0 · 4l0

)
= 10l0 − 2 log(81/4)− 2

(
2 log 2 · l0 + log l0

)
= (10− 4 log 2)l0 − 2 log l0 − 2 log(81/4)

≥ 10− 4 log 2− 2 log(81/4)

> 1,

where in the second inequality we shrank l0 to 1 based on monotony. This concludes the induction, and hence we have
proven (B.4).
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Now for l > l0, the bound (B.3) becomes(
klmax −

1

2
kl−1
max − 1

)
· 4l0−l ≤ 2d log

(
1 + klmax/(1− γ)2

)
. (B.5)

Write klmax = αldl4
l−l0 . Notice that from (B.4), k⌊l0⌋max ≤ 20d(⌊l0⌋+ 1) · 4⌊l0⌋+1−l0 . We further define α⌊l0⌋ = 80, then

plug these into (B.5), to obtain

αldl −
1

8
αl−1dl − 4l0−l ≤ 2d log(1 + αl4

ll).

This inequality holds for arbitrary l > l0: for l = ⌊l0⌋+ 1, this is the exact result of substituting the bound for k⌊l0⌋max into
(B.5); for l > l0 + 1, we further expanded l − 1 on the left hand side to l to obtain this inequality. We then go on to divide
both sides by dl:

αl −
1

8
αl−1 −

1

dl
≤ 2

l
log(1 + αl4

ll). (B.6)

From here we only need to verify through induction that αl ≤ 20 for l > l0, which yields klt ≤ 20dl4l−l0 as required.
For the induction basis, by shrinking d and l to 1, we have α⌊l0⌋+1 ≤ 11 + 2 log(1 + 4α⌊l0⌋+1). Because the function
x− 2 log(1+ 4x) is increasing in x when x ≥ 2, and 20 > 11+ 2 log(1+ 4× 20), we can deduce from here α⌊l0⌋+1 ≤ 20.

Suppose we already have αl−1 ≤ 20 in (B.6). We can then obtain αl ≤ 5/2 + 1/l + (2/l) log(1 + αl4
ll). Combine with

the trivial lower bound αl4
ll ≥ klmax ≥ 1, we have

αl ≤
5

2
+

1

l
+

2

l
log

(
2αl4

ll
)

≤ 7

2
+ 2 log 2 + 2 logαl + 2 log 4 +

2

l
log l

≤
[
7

2
+ log 64 +

2

3
log 3

]
+ 2 logαl

< 9 + 2 logαl.

Therefore, in light of the fact that x− 2 log x is increasing for x ≥ 2, and that 20 > 9 + 2 log 20, we have αl ≤ 20, which
concludes the proof.

B.2. Proof of Lemma 6.2

Proof of Lemma 6.2. By Lemma A.1, we have the following expression for θ̂lt:

θ̂lt =

(
λI+

t−1∑
τ=1

1{lτ ≤ l}2lτ−lϕVτ (sτ .aτ )ϕVτ (sτ .aτ )
⊤
)−1( t−1∑

τ=1

1{lτ ≤ l}2lτ−lϕVτ (sτ .aτ )Vτ (sτ+1)

)
.

Next, we have from (3.3) that ⟨θ∗,ϕVt
(st, at)⟩ = PVt(st, at) = Est+1∼P(·|st,at)[Vt(st+1)], which means {Vt(st+1) −

⟨θ∗,ϕVt(st, at)⟩} forms a martingale difference sequence. Furthermore, since Vt(s) is bounded by 1/(1−γ), this sequence
is 1/(1− γ)-subgaussian. Combine this with the fact ∥θ∗∥ ≤

√
d from Definition 3.1, we may deduce from Theorem 2 of

Abbasi-Yadkori et al. (2011) that with probability at least δ/
(
2l(l + 1)

)
, the following holds for all t ≥ 0:

∥θ̂lt − θ∗∥Σl
t
≤ 1

1− γ

√
2 log

[
det(Σl

t)
1/2 det(λI)−1/2

δ/
(
2l(l + 1)

) ]
+
√
λ ·
√
d

≤ 1

1− γ

√
2 log

[
[λ+ klt/(1− γ)2]d/2

λd/2
· 2l(l + 1)

δ

]
+
√
λd

=
1

1− γ

√
d log

(
1 + klt/(1− γ)2λ

)
+ 2 log

(
2l(l + 1)/δ

)
+
√
λd

≤ 1

1− γ

√
d log(1 + 20 · 4l′ l′) + 2 log

(
2l′(l′ + 1)/δ

)
+
√
λd, (B.7)
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where in the second inequality we borrowed (B.2) from the proof of Lemma 6.1, and in the final inequality we used the
conclusion of Lemma 6.1 and substituted l′ = max{l, l0}.

We now seek to prove the right hand side of (B.7) is no greater than half of βl. First, for the expression inside the big square
root, we have

d log(1 + 20 · 4ll) + 2 log
(
2l(l + 1)/δ

)
≤ d

[
log(1 + 20 · 4ll) + 2 log

(
2l(l + 1)

)]
+ 2 log(1/δ)

≤ d
[
log

(
(1 + 1/80) · 20 · 4ll

)
+ log 4 + 2 log l + 2 log(l + 1)

]
+ 2 log(1/δ)

= d
[
log 81 + (log 4) · l + 3 log l + 2 log

(
(l + 1)/2

)
+ log 4

]
+ 2 log(1/δ)

≤ d
[
log(81 · 4) + (log 4) · l + 3(l − 1) + 2

(
(l + 1)/2− 1

)]
+ 2 log(1/δ)

= d
[
(4 + log 4)l + (log 324− 4)

]
+ 2 log(1/δ)

< 9dl + 2 log(1/δ),

where we used the relation log x ≤ x− 1 for real number x > 0 twice in the third inequality.

Second, we take the square root in the above to obtain as a continuation of (B.7) that

∥θ̂lt − θ∗∥Σl
t
≤ 1

1− γ

√
9dl′ + 2 log(1/δ) +

√
dλ

≤ 1

1− γ

(
3
√
dl′ + 2

√
log(1/δ)

)
+
√
dλ

=
1

2
βl.

Now take a uniform bound, with probability at least 1−
∑∞

l=1 δ/
(
2l(l+ 1)

)
= 1− δ/2, ∥θ∗ − θ̂lt∥Σl

t
≤ βl/2 holds for all

l ≥ 1, which finishes the proof.

B.3. Proof of Lemma 6.3

Proof of Lemma 6.3. Focusing on one specific run of the ML-EVI algorithm, we use induction on u to prove that 1/(1−γ) ≥
Q

(u)
l (s, a) ≥ Q∗(s, a). When u = 0, 1/(1− γ) = Q

(0)
l (s, a) ≥ Q∗(s, a), ∀s, a.

Suppose the conclusion holds for u − 1. First recall that under the event E1 in Lemma 6.2, θ∗ ∈ B and B ∩ Clt ̸= ∅
for all t, l, so the special update rule in Line 8 is never called. Based on the update rule for V in Line 3 of Algorithm 2,
V (u−1)(s) = maxa minl Q

(u−1)
l (s, a), which right hand side is clearly upper bounded by 1/(1− γ) and lower bounded by

maxa Q
∗(s, a) = V ∗(s). Now combine this with the update rule of Q in Line 6, we see that

Q
(u)
l (s, a) = r(s, a) + γ max

θ∈B∩Cl

⟨θ,ϕV (u−1)(s, a)⟩

= r(s, a) + γ max
θ∈B∩Cl

∫
S
V (u−1)(s′)⟨θ,ϕ(s′|s, a)⟩ds′

≥ r(s, a) + γ

∫
S
V (u−1)(s′)⟨θ∗,ϕ(s′|s, a)⟩ds′

≥ r(s, a) + γ

∫
S
V ∗(s′)⟨θ∗,ϕ(s′|s, a)⟩ds′

= Q∗(s, a),

where the second equation is based on the expression of ϕV given in Definition 3.1, and the last equation is the Bellman
equation for optimal value functions in (3.2), combined with P(s′|s, a) = ⟨θ∗,ϕ(s′|s, a)⟩ from Definition 3.1.

On the other hand, for the lower bound, the definition of B in (3.4) tells us ⟨θ,ϕ(·|s, a)⟩ is a probability measure on S for
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arbitrary θ ∈ B, so their exists such a probability measure P̃ such that

Q
(u)
l (s, a) = r(s, a) + γ max

θ∈B∩Cl

∫
S
V (u−1)(s′)⟨θ,ϕ(s′|s, a)⟩ds′

= r(s, a) + γ

∫
S
P̃(s′|s, a)V (u−1)(s′)ds′

= r(s, a) + γEs′∼P̃(s′|s,a)V
(u−1)(s′) (B.8)

≤ 1 + γ · 1

1− γ

=
1

1− γ
,

where in the inequality we used r(s, a) ≤ 1 and the proven conclusion V (u−1) ≤ 1/(1− γ) from the induction hypothesis.

Since Ql
t, Vt are the returns of Algorithm 2 at time step t, we have that Ql

t(s, a) is the value function from the final iteration,
and so 1/(1− γ) ≥ Ql

t(s, a) ≥ Q∗(s, a); furthermore, from Line 12 of Algorithm 2, we have that 1/(1− γ) ≥ Vt(s) =
maxa min1≤l≤L Ql

t(s, a) ≥ maxa Q
∗(s, a) = V ∗(s). These are the desired results, and our proof is completed.

B.4. Proof of Lemma 6.4

Proof of Lemma 6.4. Again focusing on one single run of ML-EVI, we first prove the following inequality:

max
s,a,l

∣∣Q(u)
l (s, a)−Q

(u−1)
l (s, a)

∣∣ ≤ γu−1, ∀u ∈ {1, 2, . . . , U}, (B.9)

where in the maximization, the variables are taken from the following sets: s ∈ S , a ∈ A, and l ∈ {1, 2, . . . , L}.

We use induction on u for the proof. For u = 1, since Q(0)
l (s, a) = 1/(1−γ), we have V (0)(s) = maxa∈A min1≤l≤L 1/(1−

γ) = 1/(1− γ), and hence from (B.8) we see

Q
(1)
l (s, a) = r(s, a) + γEs′∼P̃(s′|s,a)V

(0)(s′)

= r(s, a) +
γ

1− γ

∈
[

γ

1− γ
,

1

1− γ

]
,

which leads to
∣∣Q(0)

l (s, a)−Q
(1)
l (s, a)

∣∣ ≤ ∣∣1/(1− γ)− γ/(1− γ)
∣∣ = 1 for all s, a, l.

Now assume inequality (B.9) holds for u− 1. From the update rule of Q in Line 6, we have

Qu
l (s, a) = r(s, a) + γ max

θ∈B∩Cl

⟨θ,ϕV (u−1)(s, a)⟩,

Qu−1
l (s, a) = r(s, a) + γ max

θ∈B∩Cl

⟨θ,ϕV (u−2)(s, a)⟩.

We therefore obtain by subtracting the two equations that

∣∣Qu
l (s, a)−Qu−1

l (s, a)
∣∣ = γ

∣∣∣∣ max
θ∈B∩Cl

⟨θ,ϕV (u−1)(s, a)⟩ − max
θ∈B∩Cl

⟨θ,ϕV (u−2)(s, a)⟩
∣∣∣∣

≤ γ max
θ∈B∩Cl

∣∣⟨θ,ϕV (u−1)(s, a)− ϕV (u−2)(s, a)⟩
∣∣

= γ
∣∣P̃(V (u−1) − V (u−2)

)
(s, a)

∣∣
≤ γmax

s

∣∣(V (u−1) − V (u−2)
)
(s)

∣∣, (B.10)

where as before, we denote P̃ = ⟨θ̃,ϕV ⟩ as the probability measure corresponding to θ̃, which attains the maximum in the
second line above.
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Next, the update rule for V in Line 3 of Algorithm 2 suggests that

V (u−1)(s) = max
a

min
1≤l≤L

Q
(u−1)
l (s, a),

V (u−2)(s) = max
a

min
1≤l≤L

Q
(u−2)
l (s, a).

Plugging these into (B.10), we get∣∣Q(u)
l (s, a)−Q

(u−1)
l (s, a)

∣∣ ≤ γmax
s

∣∣max
a

min
1≤l≤L

Q
(u−1)
l (s, a)−max

a
min

1≤l≤L
Q

(u−2)
l (s, a)

∣∣
≤ γmax

s,a,l

∣∣Q(u−1)
l (s, a)−Q

(u)
l (s, a)

∣∣
≤ γ · γu−2

= γu−1,

where we used the induction hypothesis in the third inequality.

Now consider the result of Algorithm 2 at time step t, namely Ql
t = Q

(U)
l and Vt = V (U). There again exists a probability

measure P̃ = ⟨θ̃,ϕ⟩ to support the following:

Ql
t(st, at) = Q

(U)
l (st, at)

= r(st, at) + γ max
θ∈B∩Cl

⟨θ,ϕV (U−1)(st, at)⟩

= r(st, at) + γP̃V (U−1)(st, at)

= r(st, at) + γ
[
P̃Vt(st, at) + P̃(V (U−1) − V (U))(st, at)

]
≤ r(st, at) + γP̃Vt(st, at) + γmax

s∈S

∣∣V (U−1) − V (U)
∣∣(s)

≤ r(st, at) + γ max
θ∈B∩Cl

⟨θ,ϕVt(st, at)⟩+ γmax
s∈S

∣∣max
a

min
l

Q(U−1)(s, a)−max
a

min
l

Q(U)(s, a)
∣∣

≤ r(st, at) + γ max
θ∈B∩Cl

⟨θ,ϕVt(st, at)⟩+ γmax
s,a,l

∣∣Q(U−1)(s, a)−Q(U)(s, a)
∣∣

≤ r(st, at) + γ max
θ∈B∩Cl

⟨θ,ϕVt
(st, at)⟩+ γU ,

where in the last inequality we implemented (B.9). This conludes our proof of this lemma.

C. Proof of Lemmas in Appendix A
C.1. Proof of Lemma A.1

Proof of Lemma A.1. We use induction on time step t. When t = 1, according to the initial values Σl
t = λI and bl

t = 0,
the alternative expressions hold.

Suppose the conclusion holds for t. We compare the variables at time steps t and t+ 1 of Algorithm 1, respectively after the
execution of Line 7. According to the update rules in Lines 14 to 19, if lt = Lt + 1 and thus Lt+1 = Lt + 1, new dormant
levels for l = 4Lt+C0+1, . . . , 4Lt+C0+4 are created. By the rule specified in Line 16, we use the induction hypothesis
on (t, l) and (t, 4Lt + C0), to see that for l > 4Lt + C0, the additional variables Σ are

Σl − λI =
1

2

(
Σl−1 − λI

)
= (1/2)l−(4Lt+C0)

(
Σ4Lt+C0

t − λI
)

= 2(4Lt+C0)−l
t−1∑
τ=1

1(lτ ≤ 4Lt + C0)2
lτ−(4Lt+C0)ϕVτ (sτ , aτ )ϕVτ (sτ , aτ )

⊤

=
t−1∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ
(sτ , aτ )ϕVτ

(sτ , aτ )
⊤

= Σl
t − λI,
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where in the second to last equation we used the fact lτ ≤ Lt + 1 < 4Lt + C0 for arbitrary τ < t. Similarly, for the new
variables b,

bl =
1

2
bl−1

= (1/2)l−(4Lt+C0)b4Lt+C0
t

= 2(4Lt+C0)−l
t−1∑
τ=1

1(lτ ≤ 4Lt + C0)2
lτ−(4Lt+C0)ϕVτ (sτ , aτ )Vτ (sτ+1)

=
t−1∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ
(sτ , aτ )Vτ (sτ+1)

= bl
t.

In other words, these variables for the newly created dormant levels are the same as the respective extended variables at time
step t, and so this update rule can be ignored since we are using the alternative expressions for Σl

t and bl
t for all t, l.

Now we go on to the update rules in Lines 20 to 23. For levels l < lt, the two variables of interest do not change, hence

Σl
t+1 = Σl

t

= λI+
t−1∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ
(sτ , aτ )ϕVτ

(sτ , aτ )
⊤

= λI+
t∑

τ=1

1(lτ ≤ l)2lτ−lϕVτ (sτ , aτ )ϕVτ (sτ , aτ )
⊤,

and

bl
t+1 = bl

t

= λI+
t−1∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ
(sτ , aτ )Vτ (sτ+1)

= λI+

t∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ (sτ , aτ )Vτ (sτ+1).

For levels l ≥ lt, a single term is added to the two variables respectively. Namely,

Σl
t+1 = Σl

t + 2lt−lϕVt
(st, at)ϕVt

(st, at)
⊤

= λI+

t−1∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ (sτ , aτ )ϕVτ (sτ , aτ )
⊤ + 2lt−lϕVt(st, at)ϕVt(st, at)

⊤

= λI+
t∑

τ=1

1(lτ ≤ l)2lτ−lϕVτ
(sτ , aτ )ϕVτ

(sτ , aτ )
⊤,

and that

bl
t+1 = bl

t + 2lt−lϕVt
(st, at)Vt(st+1)

=
t−1∑
τ=1

1(lτ ≤ l)2lτ−lϕVτ (sτ , aτ )Vτ (sτ+1) + 2lt−lϕVt(st, at)Vτ (sτ+1)

=
t∑

τ=1

1(lτ ≤ l)2lτ−lϕVτ
(sτ , aτ )Vτ (sτ+1).

These expressions suggest the conclusion holds for arbitrary l ≤ 4Lt + C0 at time step t.
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C.2. Proof of Lemma A.2

Proof of Lemma A.2. We use induction on u for this proof. For u = 0, by the initialization rules Q(0)
l1,∗ = Q

(0)
l2

= 1/(1− γ),

∀l1 ∈ {1, 2, . . .}, l2 ∈ {1, . . . , 4Lt + C0}, and hence V
(0)
∗ = V (0) = 1/(1− γ).

Suppose the conclusions already hold for u− 1. Consider the conclusions of Lemma D.2, which states the confidence sets of
levels above 4Lt + C0 trivially contain the entirety of B, or B ∩ Cl = B ⊃ B ∩ C4Lt+C0 . Then for any level l > 4Lt + C0

and state-action pair (s, a), by the update rule for Q in Line 6 of Algorithm 2:

Q
(u)
l,∗ (s, a) = r(s, a) + γ max

θ∈B∩Cl

⟨θ,ϕ
V

(u−1)
∗

(s, a)⟩

= r(s, a) + γ max
θ∈B∩Cl

⟨θ,ϕV (u−1)(s, a)⟩

≥ r(s, a) + γ max
θ∈B∩C4Lt+C0

⟨θ,ϕV (u−1)(s, a)⟩

= Q
(u)
4Lt+C0

(s, a).

Moreover, for any l ≤ 4Lt + C0, we have

Q
(u)
l,∗ (s, a) = r(s, a) + γ max

θ∈B∩Cl

⟨θ,ϕ
V

(u−1)
∗

(s, a)⟩

= r(s, a) + γ max
θ∈B∩Cl

⟨θ,ϕV (u−1)(s, a)⟩

= Q
(u)
l (s, a)

We now give the relation for the value functions V . For any state s, by the update rule in Line 3 of Algorithm 2,

V
(u)
∗ (s) = max

a∈A
min
l≥1

Q
(u)
l,∗ (s, a)

= max
a∈A

min

{
min

1≤l≤4Lt+C0

Q
(u)
l,∗ (s, a), min

l>4Lt+C0

Q
(u)
l,∗ (s, a)

}
= max

a∈A
min

{
min

1≤l≤4Lt+C0

Q
(u)
l (s, a), min

l>4Lt+C0

Q
(u)
l,∗ (s, a)

}
= max

a∈A
min

1≤l≤4Lt+C0

Q
(u)
l (s, a)

= V (u)(s),

where we used the relations above in the third and fourth equations. This concludes the induction and our proof.

C.3. Proof of Lemma A.3

Proof of Lemma A.3. Consider the definition in (3.4):

B :=
{
θ ∈ Rd : ∥θ∥2 ≤

√
d and ⟨ϕ(·|s, a),θ⟩ is a probability measure on S

}
.

We separate B into B1 ∩ B2, where B1 :=
{
θ : ∥θ∥2 ≤

√
d
}

and B2 :=
{
θ : ⟨ϕ(·|s, a),θ⟩ is a probability measure on S

}
.

Obviously B1 is a convex body in Rd. For B2, consider the various constraints. For an arbitrary state-action pair (s, a),
⟨ϕ(·|s, a),θ⟩ being a probability measure is equivalent to the following conditions:

⟨ϕ(s′|s, a),θ⟩ ≥ 0, ∀s′ ∈ S,∫
s′∈S
⟨ϕ(s′|s, a),θ⟩ds′ = 1.

The first constraint defines a closed half-space Hs′|s,a := {θ : ⟨ϕ(s′|s, a),θ⟩ ≥ 0} in Rd for all states s′ ∈ S, while the
second defines a hyperplane Ps,a := {θ : ⟨

∫
s′∈S ϕ(s

′|s, a)ds′,θ⟩ = 1} in Rd. With these notations, we can now write

B2 =

( ⋂
s′,s,a

Hs′|s,a

)⋂(⋂
s,a

Ps,a

)
.
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Since the sets Hs′|s,a and Ps,a are all closed convex sets, B2 being the intersection of these sets must also be closed and
convex, and finally so must the intersection of all the sets B. Since θ∗ ∈ B, this intersection is non-empty.

Now consider the affine subspace L := {θ∗ + λ(θ1 − θ2) : θ1,θ2 ∈ B, λ ∈ R} of Rd with dimension k, which is basically
the subspace passing through θ∗ and spanned by all the vectors insider B. To see that L is indeed an affine subspace of Rd,
we take κ1, κ2 ∈ L, where κ1 = θ∗ +λ1(θ1−θ2) and κ2 = θ∗ +λ2(θ3−θ4), θi ∈ B, i = 1, 2, 3, 4. Then for any µ ∈ R,

µκ1 + (1− µ)κ2 = θ∗ +
(
λ1µθ1 − λ1µθ2 + λ2(1− µ)θ3 − λ2(1− µ)θ4

)
= θ∗ +

(
|λ1µ|+ |λ2(1− µ)|

)
·
[(
µ′θ′1 + (1− µ′)θ′3

)
−
(
µ′θ′2 + (1− µ′)θ′4

)]
∈ L,

where µ′ = |λ1µ|/
(
|λ1µ|+ |λ2(1− µ)|

)
, and we used the fact B is convex in the final relation.

By taking λ = 1 and θ2 = θ∗ in the definition of B, it is clear that B ⊂ L. On the other hand, this subspace can be
generated by the vectors {θ− θ∗ : θ ∈ B} starting from θ∗. From this vector set, we select a basis for the subspace, namely
{θ∗i − θ∗ : i = 1, . . . , k}, and denote θ∗0 = θ∗.

Now consider the simplex {
∑k

i=0 λiθ
∗
i : λi ≥ 0, ∀i,

∑k
i=0 λi = 1}, which, since it has k + 1 linearly independent vertices,

is k-dimensional with inner points when constrained to L. Furthermore, because B is convex and contains all its vertices,
this simplex must be a subset of B, so B itself has inner points when constrained to L. Combine this with the fact that B1 is
bounded, and so must B be, we have the conclusion that B is a convex body when constrained to L.

D. Auxiliary Lemmas
We will give a few auxiliary lemmas in this section. The first is the well-known Azuma-Hoeffding inequality.

Lemma D.1. (Azuma-Hoeffding Inequality (Cesa-Bianchi & Lugosi, 2006)). Let {xi}ni=1 be a real-valued martingale
difference sequence with respect to the filtration {Fi}ni=1, which suggests E

[
xi

∣∣Fi

]
= 0 and xi is Fi+1-measurable. Further

assume |xi| ≤ K for some positive constant K. Then with probability at least 1− δ, we have

∣∣∣ n∑
i=1

xi

∣∣∣ ≤ K

√
2n log

1

δ
.

This next lemma proves that the fictional confidence sets with levels greater than 4Lt + C0 are trivial.

Lemma D.2. For time step t and level l > 4Lt + C0, we have Clt ⊃ B.

Proof of Lemma D.2. We first give an upper bound for the term klt when l > 4Lt + C0. The definition of klt tells us
klt =

∑t−1
τ=1 1{lτ ≤ l}2lτ−l = 2Lt−l

∑t−1
τ=1 1{lτ ≤ l}2lτ−Lt = 2Lt−lkLt

t . Recall from Algorithm 1 that C0 = 4⌈l0⌉+ 6,
we go on to apply the conclusion of Lemma 6.1:

klt ≤ 2Lt−l · 20dmax{Lt2
2Lt−2l0 , l0}

= 2Lt−l · 20(1− γ)2 max{Lt2
2Lt , l02

2l0}
≤ 20(1− γ)2 max{Lt2

−Lt−C0 , l02
−3Lt+2l0−C0}

≤ 20/64 · 2−l0 max{Lt2
−Lt , l02

−l0}

≤ 5/16 · (1− γ)/
√
d

< log 1.5 · (1− γ)/
√
d,

where we used the definition for l0 in Lemma 6.1 twice above, and used the trivial relation 2x ≥ x for arbitrary real number
x in the third inequality.

Now we target the maximum eigenvalue of Σl
t when l > 4Lt + C0. Borrowing from the determinant upper bound (B.2)
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from the proof of Lemma 6.1, we have

λmax(Σ
l
t) ≤

det(Σl
t)

λd−1

≤ (λ+ λklt/d)
d

λd−1

= λ(1 + klt/d)
d

≤ λ exp klt

≤ 1.5λ,

where in the first inequality we used the fact all eigenvalues of Σl
t are no less than λ, and in the third inequality we used the

elementary inequality 1 + x ≤ exp(x).

Next we upper bound the 2-norm of bl
t when l > 4Lt + C0. By the alternative expression in Lemma A.1:

∥bl
t∥2 ≤

t−1∑
τ=1

1(l ≥ lτ )2
lτ−l∥ϕVτ (sτ , aτ )∥2 ·

∣∣Vτ (sτ+1)
∣∣

≤ klt ·
√
d

1− γ
· 1

1− γ

≤ log 1.5

1− γ
,

where in the second inequality we used ∥ϕVτ
(sτ , aτ )∥2 ≤

√
d/(1 − γ) from Definition 3.1 and Vτ (sτ+1) ≤ 1/(1 − γ)

from Lemma 6.3.

Now for any θ ∈ B, we substitute these two bounds in the following deductions:

∥θ − (Σl
t)

−1bl
t∥Σl

t
≤ ∥θ∥Σl

t
+ ∥(Σl

t)
−1bl

t∥Σl
t

= ∥θ∥Σl
t
+ ∥bl

t∥(Σl
t)

−1

≤ ∥θ∥2 ·
√
λmax(Σl

t) + ∥bl
t∥2 ·

1√
λmin(Σl

t)

≤
√
d ·
√
1.5λ+

log 1.5

1− γ
· 1√

λ

=
√
1.5dλ+

log 1.5

1− γ

< βl,

where in the second inequality we used the relation ∥x∥2Σ = x⊤Σx ≤ x⊤[λmax(Σ)I]x = ∥x∥22 · λmax(Σ), and in the third
inequality we used ∥θ∥2 ≤

√
d for any θ ∈ B. Thus when l > 4Lt + C0, θ ∈ Clt for any θ ∈ B, and hence B ⊂ Clt.

Finally, we list a few useful elementary inequalities and relations that were implemented in our proof of the main theory,
and gather them into one single lemma below.

Lemma D.3. The following conclusions hold:

1. For η ≥ 2 and integer L > 0, we have
∑∞

l=L η−l
√
l ≤
√
L+ 1η−L+1/(η − 1).

2. For any positive real numbers a, b and x, the inequality x− a
√
x ≤ b implies the inequality x ≤ a2 + 2b.

3. For a, b ≥ 1, any real number x ≥ log
(
a+ b

√
2 log(a+ b)/ log 2

)
/ log 2 satisfies the equation 2x ≥ a+ b

√
x.
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Proof of Lemma D.3. For the first inequality:

∞∑
l=L

η−l
√
l =

∞∑
l=L

η−l
(√

L+
l∑

l′=L+1

(√
l′ −
√
l′ − 1

))
=
√
L

∞∑
l=L

η−l +
∞∑

l′=L+1

(√
l′ −
√
l′ − 1

) ∞∑
l=l′

η−l

=
√
L
η−L+1

η − 1
+

∞∑
l′=L+1

(√
l′ −
√
l′ − 1

)η−l′+1

η − 1

≤
√
L
η−L+1

η − 1
+

∞∑
l′=L+1

(√
L+ 1−

√
L
)η−l′+1

η − 1

=
√
L
η−L+1

η − 1
+
(√

L+ 1−
√
L
) η−L+1

(η − 1)2

≤
√
L+ 1η−L+1/(η − 1),

where we swapped the order of summation in the second equation, used the fact that
√
l −
√
l − 1 is decreasing in l in the

first inequality, and η − 1 ≥ 1 in the last inequality.

For the second relation, suppose positive real numbers a, b, x satisfy x − a
√
x ≤ b. Formulating the left hand side to a

squared expression, we get (
√
x− a/2)2 ≤ a2/4 + b, and further

√
x ≤ a/2 +

√
a2/4 + b. This leads to

x ≤
(
a/2 +

√
a2/4 + b

)2
≤ 2 ·

(
a2

4
+

a2

4
+ b

)
= a2 + 2b,

where we used the inequality (x+ y)2 ≤ 2(x2 + y2) in the inequality.

For the third relation, we first substitute x0 := log
(
a+ b

√
2 log(a+ b)/ log 2

)
/ log 2 into 2x − a− b

√
x, and obtain

2x0 − a− b
√
x0 = a+ b

√
2 log(a+ b)/ log 2− a− b

√
x0

= b
log(a+ b)2/ log 2− x0√
log(a+ b)2/ log 2 +

√
x0

= G(a, b) log
(a+ b)2

a+ b
√
2 log(a+ b)/ log 2

/ log 2,

where we gathered everything besides the numerator in the second line into G(a, b) for the final equation. G(a, b) as a
function in a, b is evidently always positive. After this we can see a+b

√
2 log(a+ b)/ log 2 ≤ a+b ·

√
2(a+ b) ≤ (a+b)2

since a, b ≥ 1, so 2x0 − a − b
√
x0 ≥ 0. Now we only need to prove for x ≥ x0, d(2x − a − b

√
x)/dx ≥ 0, which is

guaranteed since

d(2x − a− b
√
x)

dx
= log 2 · 2x − b

2
√
x

> log 2 · (2x0 − b
√
x0)

> 0,

where we used the fact x ≥ x0 ≥ log(1+1)/ log 2 = 1 and 2 log 2 > 1 in the first inequality. This concludes our proof.


